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Background

2\



Brunel University London 

Interfacial Mass Transfer
Gas transfer ;   molecular diffusion         turbulence in the water phase

Advective-diffusive : 𝒋𝒋𝒛𝒛 = − 𝑫𝑫𝝏𝝏 𝒄𝒄
𝝏𝝏𝝏𝝏

− 𝒘𝒘′𝒄𝒄𝒄

Gas transfer of low-diffusive gases (O2, CO2) is marked by a very thin 
concentration boundary layer at the water side

j:  gas flux
D: molecular diffusion
c: concentration
w: vertical velocity
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Surface contamination
Focus is on interfacial pollution by (insoluble) surfactants

• Surfactants reduce the surface stress of water

• Upwelling and downwelling motions typically lead to non-uniform 
surfactant concentrations and non-uniform surface stresses

• Resulting in Marangoni forces that counteract surface divergence.
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Isosurface at 50% Csat coloured 
by the surface divergence 
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Aim
To determine a parametrization of the effect of surface contamination 
on the transfer function KL

For a clean (no pollution) interface KL scales as

𝐾𝐾𝐿𝐿 ∝ 𝑆𝑆𝑆𝑆−1/2

where Sc is the Schmidt number.

For a very dirty interface  

𝐾𝐾𝐿𝐿 ∝ 𝑆𝑆𝑆𝑆−2/3

What happens at (very) moderate levels of pollution?

𝐾𝐾𝐿𝐿 ∝ 𝑆𝑆𝑆𝑆−𝑞𝑞

The power q will likely depend on 
𝑀𝑀𝑀𝑀
𝐶𝐶𝐶𝐶
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Modelling Pollution Effects
Surface tension, σ, depends on the pollutant concentration, γ. 

𝜎𝜎 = 𝜎𝜎(𝛾𝛾)
After normalization define the Marangoni number by

𝑀𝑀𝑀𝑀 = −
𝑑𝑑𝜎𝜎
𝑑𝑑𝛾𝛾

which we assume to be constant. From the model presented in Shen 
et al., (2004) JFM, Vol. 506, after some algebra, we obtain: 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= −
𝑀𝑀𝑀𝑀
𝐶𝐶𝐶𝐶

𝜕𝜕𝛾𝛾
𝜕𝜕𝜕𝜕

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= −
𝑀𝑀𝑀𝑀
𝐶𝐶𝐶𝐶

𝜕𝜕𝛾𝛾
𝜕𝜕𝜕𝜕

u: x-velocity
v: y-velocity
Re: Reynolds number
Ca: Capillary number
: surfactant concentr.γ
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Problem Investigated
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Physical Problem

Grid-stirred-driven gas transfer
Convenient analogy to bottom shear induced turbulence

www.xs4all/rdemming/travel/Indonesia
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Computational Setup

Boundary conditions

Top: �𝝏𝝏𝒖𝒖𝒊𝒊
𝝏𝝏𝝏𝝏 𝒕𝒕𝒕𝒕𝒕𝒕

= − 𝑴𝑴𝑴𝑴
𝑪𝑪𝑪𝑪

𝝏𝝏𝜸𝜸
𝝏𝝏𝒙𝒙𝒊𝒊

, 𝒊𝒊 = 1, 2 

various levels of contaminations

Sides: periodic

Bottom: flow-field copied
from LES of isotropic turbulence

𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 = 1
(saturated at all times)

𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 → 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0
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x1,u1 : x, x-velocity
x2,u2 : y, y-velocity
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Simulations performed

Ma is Marangoni number; 𝐶𝐶𝐶𝐶𝑇𝑇 = ⁄𝜇𝜇𝑈𝑈∞ 𝜎𝜎 is turb. capillary number

All simulations:  128 x 128 x 212 mesh for 5L x 5L x 3L box
Mesh is refined in z-direction towards surface
Schmidt numbers Sc = 2….32; Surfactant: Sc = 2
Turbulent flow with Tu = 40% introduced at bottom
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Case U∞ L∞ RT Ma/CaT

S0 0.113 1.033 141 0
S1 0.112 0.958 128 1
S2 0.117 0.994 139 5
S3 0.109 0.984 131 11
S4 0.110 0.927 125 54
S5 0.111 1.021 138 269
SN 0.107 0.898 117 no-slip
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Numerical Method
Flow fields in main DNS and LES isobox are solved using fourth-order 
discretisations of convection and diffusion.

A dual mesh strategy is used where up to five scalars can be solved 
simultaneously on a refined mesh

A fifth-order-accurate WENO scheme is used for scalar convection, 
combined with a fourth order central discretisation for scalar diffusion (same 
in 2D for surfactant).

Standard Message 
passing interface (MPI) 
is applied for 
communication 
between blocks.
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Effect on near-surface 
hydrodynamics
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Surface Divergence (β)

13\

• 𝛽𝛽 reduces sharply 

• Surface divergence model 
𝐾𝐾𝐿𝐿 ∝ 𝐷𝐷𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 only works 

for a small range of 
⁄𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝑇𝑇
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Instantaneous shear
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Consequences on interfacial 
mass transfer
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KL reduction
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Transition of q

17\



Brunel University London 

Clean surface fraction
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Model
First we assume that for any surface condition

𝐾𝐾𝐿𝐿 = 𝑐𝑐𝑆𝑆𝑆𝑆−𝑞𝑞𝑅𝑅𝑇𝑇−𝑟𝑟

Clean regions behave as a free-slip boundary 𝑞𝑞 = 1/2 ,
while “dirty” regions behave as a no-slip boundary 
𝑞𝑞 = 2/3

𝑐𝑐𝑆𝑆𝑆𝑆−𝑞𝑞 = �𝛼𝛼𝑐𝑐𝑓𝑓𝑆𝑆𝑆𝑆−1/2 + (1 − �𝛼𝛼)𝑐𝑐𝑛𝑛𝑆𝑆𝑆𝑆−2/3

Use Taylor series expansions to obtain first order appr. of 
c and q that are independent of Sc

𝑐𝑐 = �𝛼𝛼𝑐𝑐𝑓𝑓 + 1 − �𝛼𝛼 𝑐𝑐𝑛𝑛

𝑞𝑞 =
2
3
−
�𝛼𝛼𝑐𝑐𝑓𝑓
6𝑐𝑐
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Definition of clean

20\

𝛾𝛾 : surfactant concentr.

𝛼𝛼 : clean surface fraction

𝛾𝛾𝑡𝑡𝑡 = ⁄𝛾𝛾 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚 is threshold 
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Evaluation of model
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Conclusions

• It was confirmed that the even small levels of 
surfactant contamination have a large effect on heat 
and gas transfer

• With increasing ⁄𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝑇𝑇, the surface divergence, β, 
becomes progressively damped

• Resulting in a quick transition to a 𝐾𝐾𝐿𝐿 ∝ 𝑆𝑆𝑆𝑆−2/3 scaling 
which is typical for a no-slip surface 

• The transition can be linked to the mean clean surface 
fraction which is a relatively easily observable 
parameter.
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Future work
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Marangoni Forces promoting Buoyant 
Instability

• Surface cooling due to evaporation can be modelled by 
applying a constant heat flux at the surface.

• A buoyant instability results from this unstable layering 
of the water as cold water is heavier than warm water.

• The developing buoyant instability results in horizontal 
gradients in the surface temperature 

• As surface tension reduces with increasing 
temperature, Marangoni forces are generated that act 
to promote the buoyant instability 
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Marangoni Forces promoting Buoyant 
Instability
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Top plane view, heat flux = − 2.33
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

,𝑅𝑅𝑅𝑅 = 100,𝑃𝑃𝑃𝑃 = 7
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The end

http://images.wisegeek.com

26\


	http://images.wisegeek.com/
	Background
	Interfacial Mass Transfer
	Surface contamination
	Aim
	Modelling Pollution Effects
	Problem Investigated
	Physical Problem
	Computational Setup
	Simulations performed
	Numerical Method
	Effect on near-surface hydrodynamics
	Surface Divergence (β)
	Instantaneous shear
	Consequences on interfacial mass transfer
	KL reduction
	Transition of q
	Clean surface fraction
	Model
	Definition of clean
	Evaluation of model
	Conclusions
	Future work
	Marangoni Forces promoting Buoyant Instability
	Marangoni Forces promoting Buoyant Instability
	The end

