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Background
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Interfacial Mass Transfer

Gas transfer ;  molecular diffusion ¢mp turbulence in the water phase

j: gas flux

. a<c) ;1 ] D: molecular diffusion
Advective-diffusive : (j,) = [D w'c’) o concentration

w: vertical velocity

Gas transfer of low-diffusive gases (O,, CO,) is marked by a very thin
concentration boundary layer at the water side

Interfacial region 10-1000 um

well mixed
Bulk region
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Surface contamination

Focus is on interfacial pollution by (insoluble) surfactants
« Surfactants reduce the surface stress of water

« Upwelling and downwelling motions typically lead to non-uniform
surfactant concentrations and non-uniform surface stresses

« Resulting in Marangoni forces that counteract surface divergence.

Isosurface at 50% C,; coloured
by the surface divergence
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Aim

To determine a parametrization of the effect of surface contamination
on the transfer function K,
For a clean (no pollution) interface K, scales as

K; « Sc~1/2
where Sc is the Schmidt number.
For a very dirty interface

K, « Sc=2/3
What happens at (very) moderate levels of pollution?

K; o« Sc™1

M
The power g will likely depend on C—;‘
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Modelling Pollution Effects

Surface tension, o, depends on the pollutant concentration, y.

o=0(y)
After normalization define the Marangoni number by
do
Ma = _d_y

which we assume to be constant. From the model presented in Shen
et al., (2004) JFM, Vol. 506, after some algebra, we obtain:

du Ma oy |
., = — —_ 0 = u: x-velocity
0z interface Ca Ox v: y-velocity

Re: Reynolds number
dv Ma a)/ Ca: Capillary number
a. == —-— — v: surfactant concentr.
0z Ca 0y

interface
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Problem Investigated
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Physical Problem

Grid-stirred-driven gas transfer

Convenient analogy to bottom shear induced turbulence

Gas flux (j)
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Computational Setup

Boundary conditions

X,Uq X, X-velocity
XU, Y, y-velocity

various levels of contaminations

MWW
BRLRRWE

ulewop SNQ [enpe

field copied

from LES of isotropic turbulence

Sides: periodic
Bottom: flow-

x0q §37 Bujuuru Ajusunouco

(saturated at all times)
dc
Cpottom — 3z 0
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Simulations performed

___

S1

S2
S3
S4
S5
SN

0.113
0.112
0.117
0.109
0.110
0.111
0.107

1.033
0.958
0.994
0.984
0.927
1.021
0.898

128
139
131
125
138
117

1
5
11
54
269
no-slip

Ma is Marangoni number; Cay = uU /o is turb. capillary number

All simulations: 128 x 128 x 212 mesh for 5L x 5L x 3L box

Mesh is refined in z-direction towards surface
Schmidt numbers Sc = 2....32; Surfactant: Sc = 2
Turbulent flow with Tu = 40% introduced at bottom
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Numerical Method

Flow fields in main DNS and LES isobox are solved using fourth-order
discretisations of convection and diffusion.

A dual mesh strategy is used where up to five scalars can be solved
simultaneously on a refined mesh

A fifth-order-accurate WENO scheme is used for scalar convection,
combined with a fourth order central discretisation for scalar diffusion (same

in 2D for surfactant).
mirror/1

Top boundary: free slip, T=T,, c=c, i PIV: 532nm
air outlet 4 oplics airinlet  LIF:266nm

Standard Message g
passing interface (MPI)
is applied for
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between blocks.
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Bottom boundary : free slip, T adiabatic, zero scalar flux
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Effect on near-surface
hydrodynamics
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y/L

Surface Divergence (B)
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3, t=300.00
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Surface divergence model

(K, & \/DByms) only works

for a small range of
Ma/Cary
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Instantaneous shear
B 7 [T T T B T T 7T 7T T
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m orientation and cross-sectional area
become different

m explain the apparent increase in the
integral length scale

m strong correlation between low
concentration regions and strong
positive surface divergence is lost
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Consequences on interfacial
mass transfer
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K, reduction
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Transition of g

-0.5 O numerical result i
gq X predicted q(apas)
— — — predicted g(Ma/Car)
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Steep transition of g from 1? (clean) to % (very dirty)
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Clean surface fraction

Ma/Car = 1 '}fhf

o3
=5l B
1

X7L

Ma/Car = 11 '}f,"'}f
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X/L

NN

A good correlation was found between the
Schmidt exponent g and clean surface fraction.
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Model

First we assume that for any surface condition
K; = cSc™9R;"

Clean regions behave as a free-slip boundary (g = 1/2),
while “dirty” regions behave as a no-slip boundary

(g =2/3)
cSc™9 = aceSc? + (1 — a)c,Sc™%/3

Use Taylor series expansions to obtain first order appr. of
¢ and g that are independent of Sc

c=acr+(1—a)c,
2 C_(Cf

153" %
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Definition of clean

Ma/Car = 1 ok Ma/Car = 11 olk ’}‘

TEEX
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Evaluation of model
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Conclusions

« It was confirmed that the even small levels of
surfactant contamination have a large effect on heat

and gas transfer

« With increasing Ma/Car, the surface divergence, S3,
becomes progressively damped

- Resulting in a quick transition to a K; o« Sc~?/3 scaling
which is typical for a no-slip surface

* The transition can be linked to the mean clean surface
fraction which is a relatively easily observable
parameter.
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Future work
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Marangoni Forces promoting Buoyant
Instability

 Surface cooling due to evaporation can be modelled by
applying a constant heat flux at the surface.

* A buoyant instability results from this unstable layering
of the water as cold water is heavier than warm water.

* The developing buoyant instability results in horizontal
gradients in the surface temperature

 As surface tension reduces with increasing
temperature, Marangoni forces are generated that act
to promote the buoyant instability
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Marangoni Forces promoting Buoyant
Instability

Top plane view, heat flux = —

233 pPe =100Pr=7
RePr

t=10.25

T. 025 0.3 0.35 0.4 045 0.5 0.55 0.6 0.65 0.7 0.75

Ma=20 Ma =1
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