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Background: Greenhouse gas fluxes over
rivers
• Considerable outgassing of carbon from rivers, not just passive carbon-

transporting pipes
• Unknowns:

• Magnitude of fluxes
• Drivers of fluxes in different-sized rivers
• Nighttime fluxes

• Lack of previous EC measurements: only one study of a boreal river (Huotari et 
al. 2013)

• Goal: to measure and quantify greenhouse gas fluxes and the physical processes
that control them on the River Kitinen in northern Finland

• Four-month campaign in 2018
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Site of measurements

• Köppen climate classification Dfc (northern boreal)
• 67.37 N, 26.62 E, 173 m above sea level
• River Kitinen

• length 235 km
• catchment area 7 672 km2

• width at the experiment site 180 m
• mean yearly discharge (10 km downstream) 103 m3/s

• Heavily regulated river: seven hydropower plants, power plant 11 km 
both up and downstream from the experiment site

• Water current completely controlled by the power plants



Platform

turbulence

EC pCO2, 
air

pCO2, 
water

radiation



Eddy covariance measurements

• METEK uSonic-3, Li-Cor LI7200RS (enclosed-path)
• Normal data processing workflow
• Data screening: skewness & kurtosis of w and c, flux stationarity, 

minimum σw threshold, wind direction using footprint analysis (Kljun
et al. 2014)

• 27 % of CO2 fluxes and 23 % of CH4 fluxes were retained after data 
screening

• σw threshold and wind direction most prominent



σw filtering

• σw threshold at where
the variability becomes
independent on σw

• Same threshold for both
FCO2 and FCH4



CO2 and CH4 fluxes and their variability

• Fluxes were generally small and 
relative flux variability large

• Highest FCO2 (0.49 ± 0.98 
µmol m-2 s-1) and FCH4 (5.5 ±
7.9 nmol m-2 s-1) in August

• Occasional negative FCO2 in 
June opposite to the measured
ΔpCO2



Diurnal cycle in the fluxes and the nighttime
flux problem

• Nighttime CO2 fluxes were higher, 
large variability in all fluxes

• σw filtering decreases the FCO2
difference: suggests that the large
nocturnal fluxes do not represent the
surface exchange

• However, data coverage only 10–15 % 
during night

• Negative CO2 fluxes in daytime in 
June



Gas transfer velocity and wind speed
• Models:

• Cole & Caraco (1998): 𝑘𝑘600 = (2.07 +
0.215𝑈𝑈101.7)( 𝑆𝑆𝑆𝑆

600
)−0.5

• Wanninkhof (2014): 𝑘𝑘600 = 0.251𝑈𝑈102 ( 𝑆𝑆𝑆𝑆
600

)−0.5

• Zappa et al. (2007) (surface renewal): 𝑘𝑘600 =
𝑐𝑐(εν)1/4𝑆𝑆𝑆𝑆−1/2

• Line fit: 𝑘𝑘600 = 0.11 � 𝑈𝑈102 + 5.2

• Non-zero intercept is required
• Buoyancy flux is required (also Guseva et al. 2021: 

often dominant during low wind)



Conclusions

• EC measurements can and should be conducted on rivers but data 
could be scarce

• Continuous measurements are needed to capture nocturnal fluxes

• The effect of the buoyancy flux on the gas transfer cannot be
neglected
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Thank you! Questions?



Extra: footprint analysis

• Kljun et al. (2015) footprint
model

• Footprint underestimated at the
river bank directions

• Accepted wind sectors where
the maximum distance to 90 % 
line (177 m) intersects the river
banks
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