"Substantially larger atmosphere-ocean CO2 fluxes from surface observations" -- an update on near-surface temperature effects

Andy Watson¹, Ute Schuster¹, Peter Landschützer², Jamie Shutler¹, Tom Holding¹, Ian Ashton¹, David Woolf³, Lonneke Goddijn-Murphy⁴

- 1. College of Life and Environmental Sciences, University of Exeter, UK
- 2. Max Planck Institute for Meteorology, Hamburg, Germany
- 3. Herriot-Watt University, UK
- 4. University of the Highlands and Islands, UK

We gratefully acknowledge all those who have contributed data to SOCAT!

<u>Questions concerning calculation of ocean – atmosphere CO2</u> <u>flux from surface data</u>

- 1. Biases and corrections due to near-surface temperature effects
- 2. The precision with which global-scale fluxes can be constructed from interpolated surface data.

A	K I	
<i>·</i> · ·		

https://doi.org/10.1038/s41467-020-18203-3

Watson et al, Nat. Comms (2020).

Revised estimates of ocean-atmosphere CO₂ flux are consistent with ocean carbon inventory

Andrew J. Watson [™], Ute Schuster¹, Jamie D. Shutler ¹, Thomas Holding¹, Ian G. C. Ashton ¹, Peter Landschützer ², David K. Woolf ³ & Lonneke Goddijn-Murphy ⁴

- Important to take into account near-surface (temperature gradients and biases when calculating air-sea flux from surface data (e.g. SOCAT) using bulk formula.
- When this is done, global estimates of atmosphere-to-ocean flux are substantially increased – we suggested by ~0.8-0.9 PgC yr⁻¹. This brings surface fluxes into close agreement with estimates of the rate of increase in the ocean carbon inventory.
- Bottom line: we probably overestimated the correction somewhat, it may be closer to 0.6 PgC yr⁻¹, -- still important however!

Two sources of gradients and biases that affect air-sea CO₂ flux

- Bias between measured "inlet" and true mixed layer temperatures. (warm ships' engine rooms?)
- 2. The cool skin of the surface ocean

SOCAT "inlet" T differs from satellite-derived remote sensing product for subskin* temperature (at ~20cm depth).

- The difference ΔT can be positive or negative, but inlet temperatures are higher by ~0.2-0.3°C on average than colocated satellite temperature estimates of subskin T.
- Why?
 - Probably on average a small increase in T with depth this close to the surface.
 - Most likely affected by warm bias in "Engine-room Inlet" temperatures, warmed by ship's infrastructure – a well known effect observed in studies of surface temperature observations.
- Dissolved CO₂ needs to be adjusted to take this into account when calculating air-sea fluxes.

*For discussion and definition see GHRSST group page: https://www.ghrsst.org/ghrsst-data-services/products/

- We used OISST product from NOAA (Reynolds et al, 2007).
- Huang et al (2021)* identify a cold bias in the OISST data set compared to global Argo data
 - Regionally variable
 - -0.14 K in the global average.
- Dong et al (2022) suggest small net warm bias in SOCAT data using surface buoy data (iQuam)
 - ~0.02 K globally
 - "Update on the temperature correction of global air-sea CO2 flux estimates": Dong, Y, et al:<u>https://doi.org/10.1002/essoar.10510573.1</u>
- Still open, but it looks as if the Watson et al value for this component is too high.

* "Improvements of the daily optimally interpolated sea surface temperature (DOISST) version 2.1", Huang, B. et al, J. Clim. (2021). DOI: 10.1175/JCLI-D-20-0166.1

<u>Histogram of OISST subskin temperature –</u> <u>SOCAT inlet temperature (SOCAT v2019)</u>

From Holding et al product, constructed using OISST monthly average SSTs co-located with SOCAT data, then "cruiseweighted" average taken

- Skewed distribution with mean heavily influenced by the tails.
- Most SOCAT measurements are biased warm, but a few large cold biases reduce the mean warm bias.

Two sources of gradients and biases that affect air-sea CO₂ flux

2) There is a cool "skin" at the surface.

- Increase in solubility results in higher concentration of dissolved CO_2 in equilibrium with atmospheric CO_2 .

Histogram of climatological surface-subskin temperature, 2003-2011. (ESA CCI SST product)

ESA CCI SST product: Merchant, C.J. et al., *Nat Sci Data* 6, 223, 2019.

<u>Climatological skin temperature deviation, 2003-2011:</u> <u>from ESA CCI SST.</u>

*Should skin temperature effect on CO2 budget be included in models?

See poster by Andrea Rochner, tonight

1 x 1 degree, monthly climatology

Deviation is largest in the winter hemisphere, and in warm currents (Gulf Stream, Kuroshio).

ESA CCI SST product: Merchant, C.J. et al., *Nat Sci Data* 6, 223, 2019.

<u>Comparison of frequency distributions of near-surface temperature</u> <u>differences</u>

Temperature and dissolved CO₂ in the top layer of the ocean

This cartoon shows typical temperature (blue) and dissolved CO₂ (red) in the top 10m.

Note the log depth scale!

For detailed discussion see Woolf, D. K. et al, J. Geophys. Res Oceans, **121** pp. 1229–1248 (2016)

References:

Watson, A. J. et al, Nat Comm **11**, art no. 4422 (2020) doi.org/10.1038/s41467-020-18203-3 Woolf, D. K. et al, JGR **121** 1229 (2016) doi.org/10.1002/2015JC011427 <u>Quantifying uncertainties in ocean-atmosphere fluxes due</u> <u>to the imperfect coverage of surface data</u> <u>Quantifying uncertainties in ocean-atmosphere fluxes due</u> <u>to the imperfect coverage of surface data</u>

SOCAT Coverage in the Southern Ocean of winter-time data

Red – data in SOCAT 1992-2000 Blue – data in SOCAT 2000-2018

What is the ocean sink and its uncertainty as calculated by SOCAT coverage?

Start from SOCAT gridded data,

- Gap-fill by three methods.
- Apply to oceans divided up in each of three ways, so 9 estimates in total.

Gap filling methods

- Method 1: Fit seasonal cycle and linear time trend of fCO₂ to all monthly mean of data, apply fitted values over whole region.
- Method 2: Multiple linear regressions of fCO₂ on SST, SSS, Mixed layer depth, XCO_{2atm}.
- Method 3: Landschützer feed-forward neural net.

Divide the Ocean up in three different ways

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SOM-"Takahashi" biomes (December)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fay and Mckinley (2012) biomes

Method 1:

- deliberately simplistic!
- generally poor fits!

Estimates of ocean uptake compared to interior inventory of anthropogenic carbon

Cumulative CO₂ uptake through surface (–ve is into ocean) July 1994- June 2007 (PgC, $\pm 2\sigma$)

	Atlantic	Pacific	Indian	Other basins	global		
north	5.68±0.97	-6.60±0.90	+1.16±0.43	-1.56±0.8	-12.7±1.6		
south	-3.22±0.91	-3.43±4.6	-7.41±0.96	-	-14.1±4.6		
basin	-8.91±1.50	-10.04±4.3	-6.25±1.20	- (-26.8±3.4		
Gruber et al ¹⁵ estimates of inventory increase 1994-2007 (PgC)							
north	6.0±0.4	5.2±0.6	0.8±0.4	1.5±0.6	13.5±1.0		
south	5.9±1.2	8.0±1.2	6.3±3.4	-	20.1±3.8		
basin	11.9±1.3	13.2±1.3	7.1±3.4	- (33.7±4.0		

- The difference is the pre-industrial "riverine" flux (plus estimate for the Arctic)
- 33.7-26.8 = 6.9 PgC in 13 years → 0.53 PgC yr⁻¹
- Consistent with previous estimates of 0.45 (riverine) and 0.12 (arctic) →0.57 PgC yr⁻¹
- <u>Not</u> consistent with the additional "natural non-steady-state" flux hypothesised by Gruber et al.

Global anthropogenic CO₂ ocean-atmosphere flux

Global flux +0.57 compared to Gruber et al estimate.

Conclusions

- Correcting "surface" fCO₂ observations to true interface temperatures increases the calculated fluxes, by an amount, still uncertain, but very probably in excess of 0.5 Pg C yr⁻¹
- Globally and at basin level, fluxes can be specified with 90% confidence intervals of around ±0.3 Pg C yr⁻¹ after 2000, (and before that in N. Hemisphere).
- Southern ocean and South Pacific contribute much of the uncertainty.
- Corrections make surface fluxes approximately consistent with observed increase in anthropogenic CO₂ calculated from ocean interior observations.

