On the parameterisation of air-sea gas transfer of CO_2 via wave breaking energy dissipation rate

Andrew W. Smith¹, Adrian H. Callaghan¹ and Jean-Raymond Bidlot² ¹Imperial College London ²European Centre for Medium-Range Weather Forecasts

The 8th International Symposium on Gas Transfer at Water Surfaces | Plymouth, UK

Plymouth Marine Laboratory

Natural Environment Research Council

Momentum, heat, material and gas exchanged between atmosphere, waves, and ocean through dynamic and thermodynamic processes

Diffusion • Wave growth and breaking

Bubbles, sea spray, spume facilitate exchange and impact up-scale budgets Air-sea gas fluxes on global climate

Notable Gases and their Importance

Scientific Objectives

1 Develop a hybrid gas transfer velocity parameterization with bubblemediated gas exchange linked explicitly to breaking wave energy dissipation

```
Session 3 (Tues 17 May 14:30)
Energy dissipation-based estimates of whitecap coverage
and air entrainment rates in whitecaps – Adrian Callaghan
```

Evaluate our parameterisation and existing wind-only and wind-wave parameterisations using outputs from a wind-forced spectral wave model, and compare with field measurements

High Wind Gas Exchange Study (HiWinGS, 2013) Blomquist et al. (2017; BL17) : Wind-only Deike and Melville (2018; DM18) : Wind-wave

3

Investigate and identify sources of parameterisation success, uncertainty and error considering physical and chemical processes

Repeat 2-3 with a larger, more comprehensive data-set

Field Data: High Wind Gas Exchange Study

Field Data: High Wind Gas Exchange Study

Spectral Wave Model: ECMWF ERA-5H

Spectral Wave Model: ECMWF ERA-5H

Spectral Wave Model: ECMWF ERA-5H

Results: Hybrid Gas Transfer Velocity Parameterisation

Results: Hybrid Gas Transfer Velocity Parameterisation

Wind Speed

Wave Age

Wind Speed

Wind Speed

Wave Age

Wind Speed

Wind Speed

Wave Age

Wind Speed

Results: Evaluating Gas Transfer Velocity Parameterisations

Performance Summary

Sea State	BL	17	DM18	SC22
Developing / Developed $(c_p/U10_N < 1.2)$	R ² : RMSE:	$\begin{array}{c} 0.81\\ 28.8 \end{array}$	$\begin{array}{c} 0.73\\ 22.5\end{array}$	$\begin{array}{c} 0.72\\22.9\end{array}$
Swell $(c_p/U10_N \ge 1.2)$	R ² : RMSE:	$\begin{array}{c} 0.73\\ 21.6\end{array}$	0.75 23.2	$\begin{array}{c} 0.73\\ 21.4\end{array}$
Total (all)	R ² : RMSE:	$\begin{array}{c} 0.82\\ 24.8\end{array}$	$\begin{array}{c} 0.77\\22.6\end{array}$	$\begin{array}{c} 0.75\\22.0\end{array}$

Results: Parameterisation Success, Uncertainty, and Error

Results: Parameterisation Success, Uncertainty, and Error

Results: Parameterisation Success, Uncertainty, and Error

Conclusions

Wind-speed based parameterisations are inadequate

- Scatter too large ٠
- Missing wave breaking as the dominant air entrainment mechanism at intermediate and high winds Missing low-wind swell influence, sheltering effects, chemistry
- ٠

Conclusions

Wind-wave parameterisations of DM18 and SC22 perform similarly across developing, developed, and swell sea states

- Correlation coefficients in the mid 70s, similar RMSE
- Similar description of air entrainment, solubility effects
- Both perform more poorly at low winds, with more scatter in swell seas

Conclusions

1

2

3

- Wind-speed based parameterisations are inadequate
- Scatter too large
- Missing wave breaking as the dominant air entrainment mechanism at intermediate and high winds
- Missing low-wind swell influence, sheltering effects, chemistry
- Wind-wave parameterisations of DM18 and SC22 perform similarly across developing, developed, and swell sea states
 - Correlation coefficients in the mid 70s, similar RMSE
- Similar description of air entrainment, solubility effects
- Both perform more poorly at low winds, with more scatter in swell seas
- Both DM18 and SC22 are improvements on wind-only parameterisation but there is still room for further improvement
 - Physics: Wave sheltering, directional spread, wind-wave alignment, choice of wave height for entrainment/ballistic velocity, is effective air fraction constant?
 - Chemistry: Radius-dependence of bubbles/lifetime/efficiency
 - Dataset: Location? Fetch? Instrument choices/error? ... Need more data!

Future Work

Evaluate parameterisations across more datasets

- 9 cruise datasets (> 7000 gas transfer velocity measurements) Spans 12 years, 2007-2019 Different wind speeds, wave conditions, fetch, water temperature (solubility) •

Future Work

0.6

 10^{-2}

Incorporate missing equilibration chemistry through efficiency factor

Based on parameterisations for radius-dependent bubble equilibration, rise velocity, plume penetration depth, solubility

0.8

0.6

0.4

0.2

0

 10^{2}

Account for contributions of bubbles of different sizes

 10^{0}

 $r \,(\mathrm{mm})$

 $E(r) = \frac{z_0}{z_0 + H_{eq}}$

Equilibration distance

$$H_{eq}(r) = \frac{4\pi}{3\alpha} \frac{rU(r)}{k(r)}$$

Diffusional flow rate or gas transfer coefficient

$$k(r) = 8\sqrt{\frac{\pi D U(r)}{2r}}$$

$$k_b \propto \frac{V_b}{\alpha} = \frac{\int_0^\infty (4/3)\pi r^3 Q(r) E(r) dr}{\alpha}$$

Future Work

Laboratory testing & field data of breaking waves to constrain a_{eff} and \overline{w}_{ent}

- Various air fraction estimates from literature (0.2-0.6; Lamarre and Melville, 1991; Deane and Stokes, 2002; Deane 1999)
- Optimize entrainment velocity against field estimates from Adriatic Sea, Black Sea, Yellow Sea

Acknowledgements

Dr. Adrian Callaghan Senior Lecturer Imperial College London

Principal investigator Laboratory and field studies in support of parameterisation physics

Dr. Ming-Xi Yang Chemical Oceanographer Plymouth Marine Laboratory

Gas transfer velocity data from cruises Eddy covariance flux analysis

Dr. Jean-Raymond Bidlot

Senior Scientist European Centre for Medium-Range Weather Forecasts

Spectral wave model execution and outputs

Further Work at GTWS22

Earlier this week

Dr. Adrian Callaghan Senior Lecturer, Imperial College London

Session 3 (Tues 17 May 14:30) Energy dissipation-based estimates of white cap coverage and air entrainment rates in white caps

Rui Cao Ph.D. Student, Imperial College London

Poster Session (Tues 17 May 17:30 - 19:00) Observations of breaking wave air entrainment and bubbles in varying wind and wave conditions

Upcoming at 10:30

Joe Peach

Ph.D. Student, Imperial College London

Statistical distributions of white cap variables using a novel remote sensing technique to detect and track individual white caps in digital sea surface images