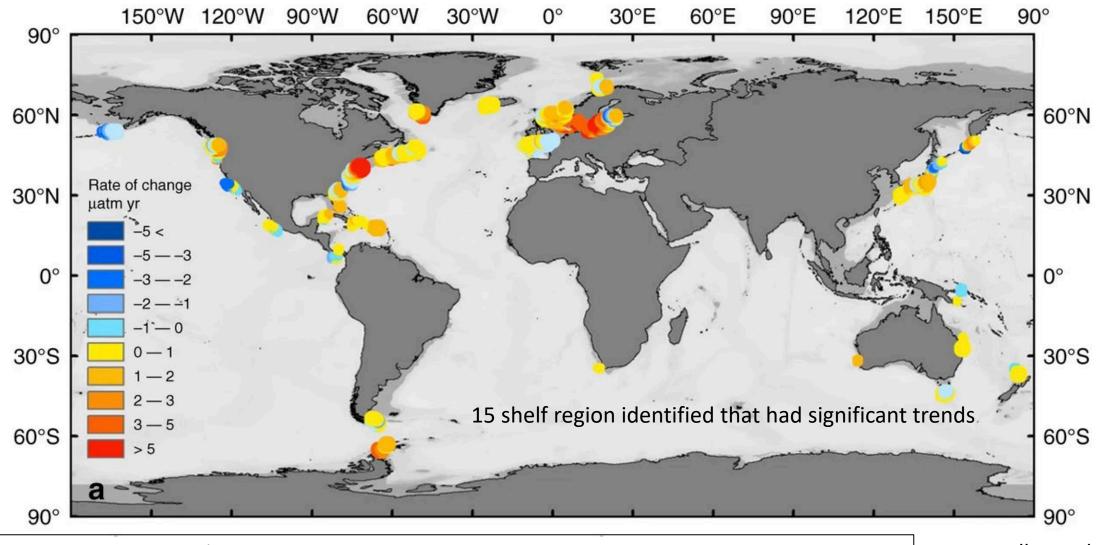
Shelf sea carbon accumulation rates are consistent with ocean current and atmosphere-ocean exchange inbalances


Jamie D. Shutler, Thomas Holding, Clement Ubelmann, Lucile Gaultier, Fabrice Collard, Fabrice Ardhuin, Bertrand Chapron, Marie-Helene Rio, Craig Donlon

Dr Jamie Shutler Associate Professor of Earth observation University of Exeter (in Cornwall) j.d.shutler@exeter.ac.uk

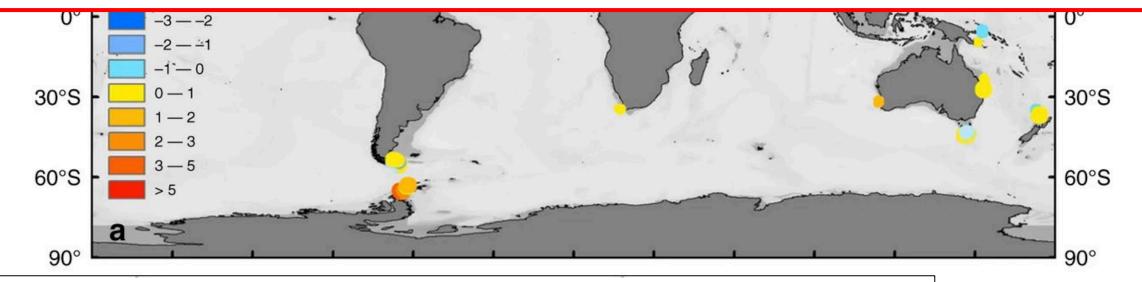
Shelf sea carbon sinks

- Oceanic CO₂ sink has so far acted as a brake on climate change.
- Shelf seas absorb carbon which is then exported to the deep ocean, but this absorption is also causing ocean acidification.
- Shelf seas are considered important CO₂ sinks and provide a range of ecosystem services e.g. food, well being, transport, recreation.

Shelf seas as variable but increasing CO₂ sinks

Positive increase in d Δ pCO₂/dt implies a strengthening CO₂ sink (and increasing ocean acidification)

Laruelle et al., 2018


Shelf seas as variable but increasing CO₂ sinks

Two mechanisms have been proposed to explain how the continental shelf CO₂ sink has evolved

- 1. Imbalances in strength between air-sea exchange and deep water export processes modulate carbon accumulation.
- 2. evolution of the biological pump (net heterotrophy to net autotrophy) modulate carbon accumulation.

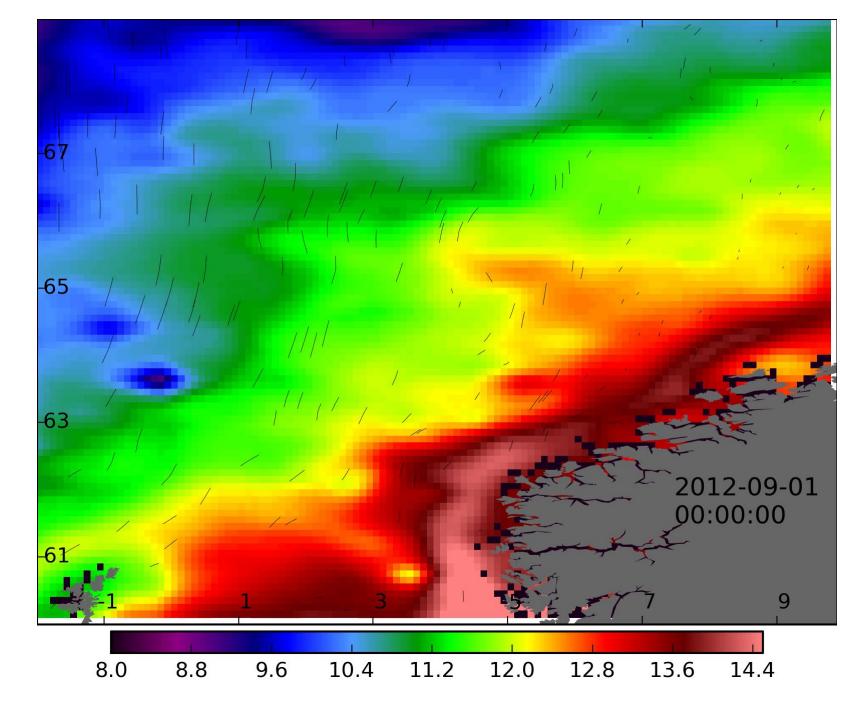
Can we identified evidence for mechanism 1?

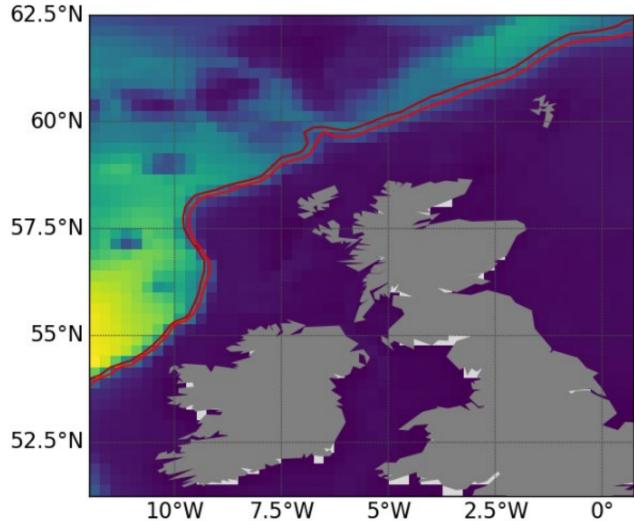
Positive increase in $d\Delta pCO_2/dt$ implies a strengthening CO_2 sink (and increasing ocean acidification)

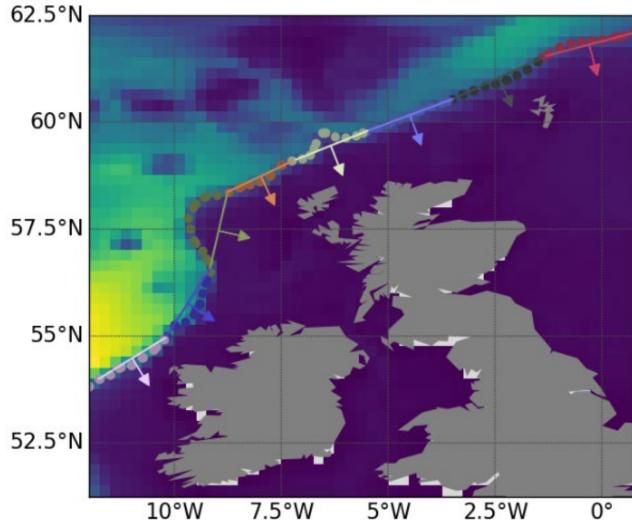
Laruelle et al., 2018

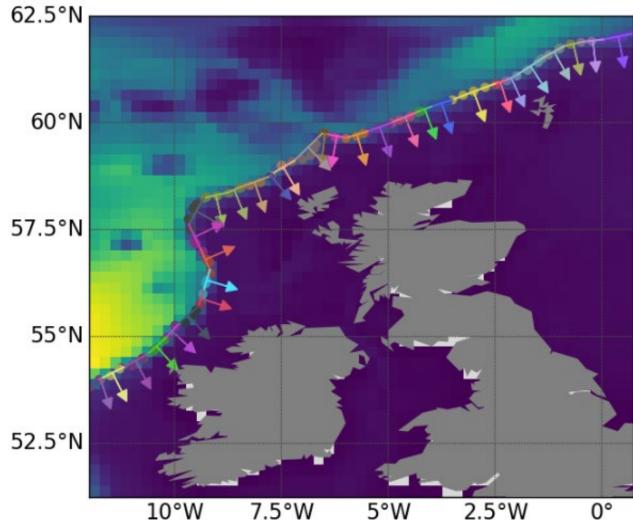
Data

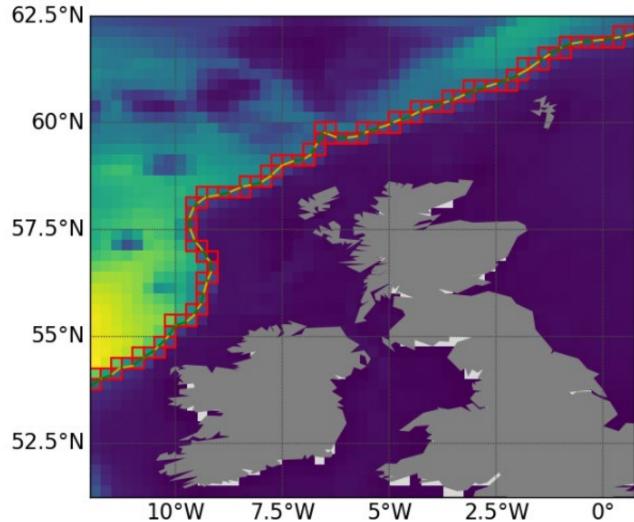
Water flow

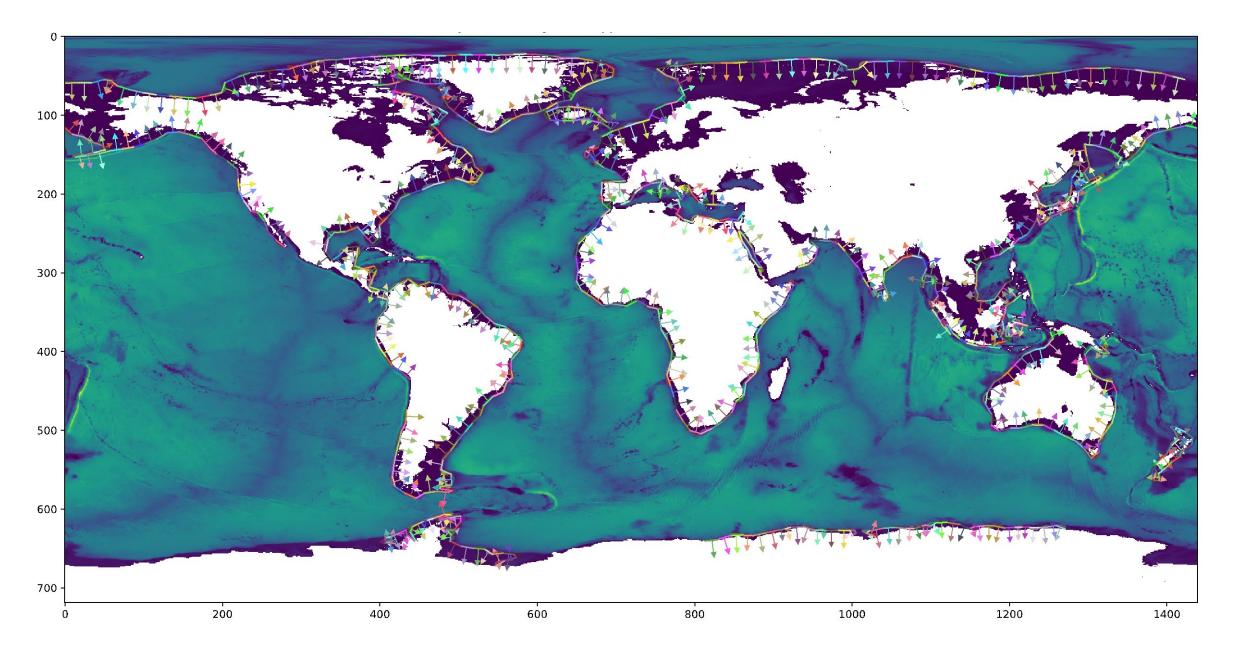

Copernicus service (GlobCurrent) re-analysis of Ekman and geostrophic currents at 0 m and 15 m (Chapron, 2015; Rio *et al.*, 2014).

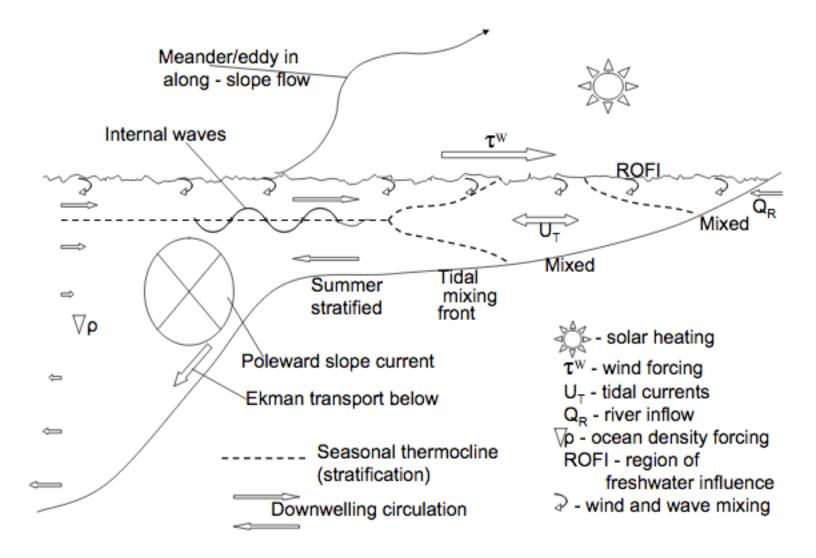

WaveWatch III model simulations for Stokes drift (Rascle and Ardhuin, 2013).

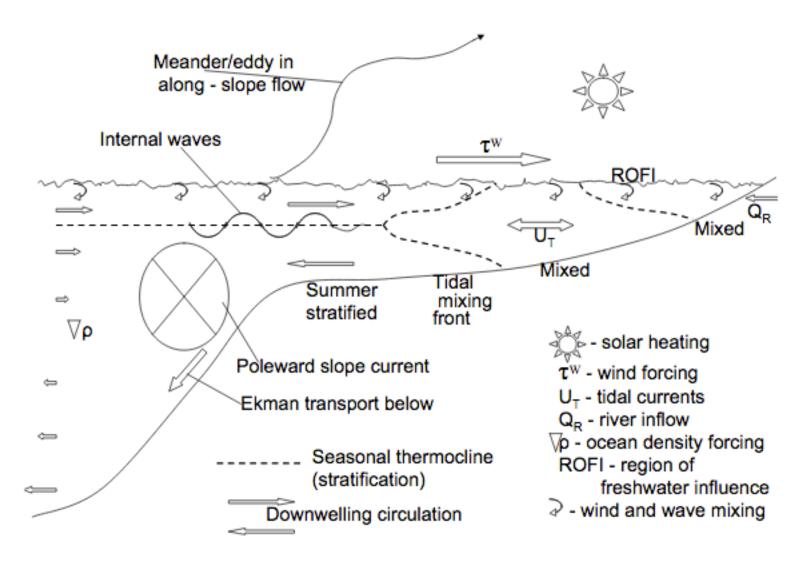

Air-sea exchange


k (Nightingale *et al.* 2000) using Globcurrent U10; OISST (Banzon *et al.,* 2016).


Bathymetry GEBCO







Estimating shelf sea transport and export

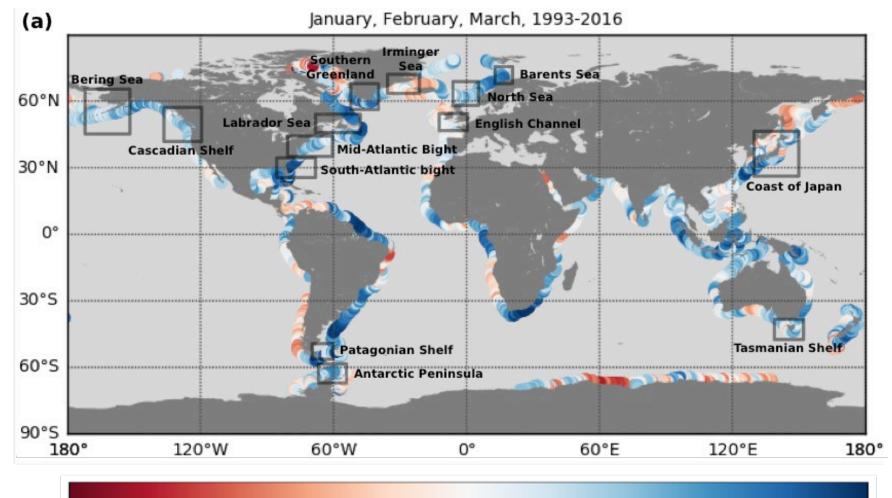
Schematic from Huthnance et al., (2009)

Estimating shelf sea transport and export

 $C_{E} = 0$ m Ekman component

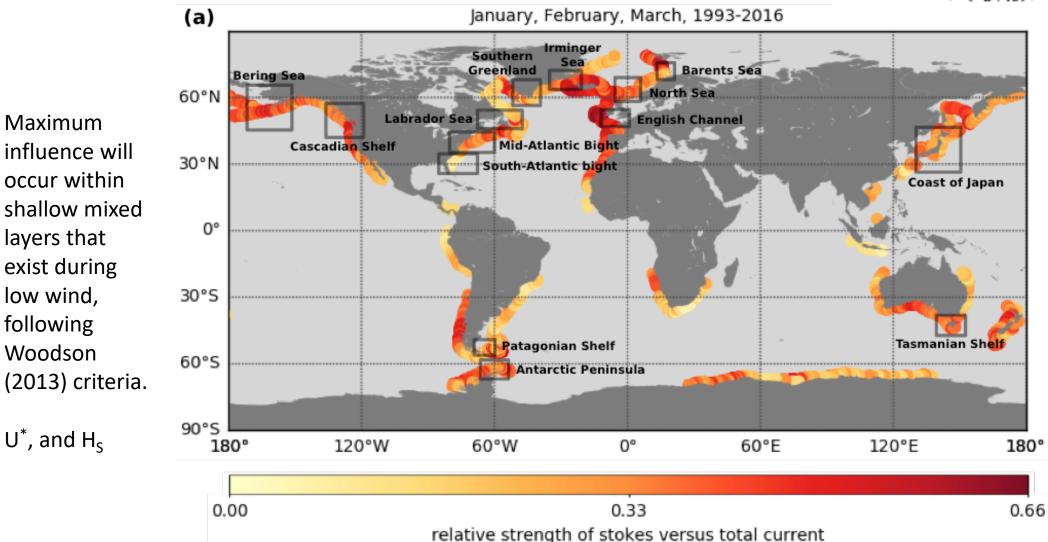
 $|\mathbf{n}(C_{E} + 45^{\circ})|$ is the estimate of the upper range of the net current strength crossing the shelf-edge within the mixed layer

Assume density within mixed layer is uniform.


 $C_G = 0$ m geostrophic component. $|\mathbf{n}(C_G)|$ should b a good proxy for all mixed layer.

d = dominance

 $d = \frac{|n(C_G)|}{|n(C_{E+45})| + |n(C_G)|}$


Schematic from Huthnance et al., (2009)

Relative dominance of geostrophic versus Ekman across shelf boundaries

0.0

Relative dominance of Stokes versus total current across shelf boundaries $P_{Stoke} = \frac{|n(C_S)|}{|n(C_{E+45})| + |n(C_G)| + |n(C_S)|}$

Cross-shelf exchange along the shelf edge

Mid Atlantic bight

onto-shelf current ms⁻¹

0.2 geostrophic 0.2 stokes ekman 0.0 0.0 onto-shelf current ms -0.2 -0.2 -0.4 0.4 -0.6 0.6 -0.8 -0.8 -1.0-1.0aeostrophic -1.2stokes ekman -1.2Mid-Atlantic Bight **Mid-Atlantic Bight** Rate of change -1.4600 800 1000 1200 1400 400 200 400 1200 1400 1000 0 200 600 800 µatm yr 0 distance along shelf (km, South to North) distance along shelf (km, South to North) 60°W 40°N 20 Mid-Atlantic Bight Avg: 1.93 (1.92) Std: 3.11 (3.19) Number of cells n: 76 (78) 30°N -5 µatm yr-1 С 70°W

January to March

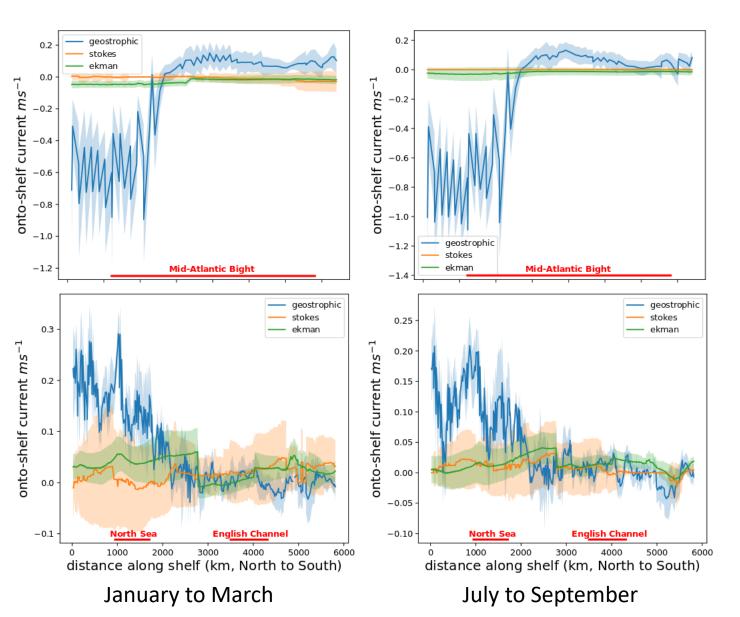
July to September

-5 <

-3--2 -1-0

0 - 1

1 - 22 - 3


3 - 5

> 5

Cross-shelf exchange along the shelf edge

Mid Atlantic bight

European shelf seas

d∆pCO₂/dt groups from Laruelle et al., (2018)	Seas from Laruelle et al., (2018)	Winter time cross-shelf exchange μ±σ (m s ⁻¹)	Winter time air-sea exchange μ±σ (10 ⁻⁶ m s⁻¹)	Observations of winter control of cross-shelf currents valid for the mixed layer	Implied conditions
High rate of increase (+2 µatm yr ⁻¹)	North Sea (NS) Mid Atlantic Bight (MAB) Southern Greenland (SG), Antarctic Peninsula (AP)	NS 0.16 \pm 0.15 MAB -0.08 \pm 0.30 SG -0.13 \pm 0.16 AP 0.01 \pm 0.08 (weak to medium exchange)	NS 22.47 ± 17.94 MAB 13.08 ± 8.64 SG 18.39 ± 17.17 AP 13.33 ± 12.36 (medium to high air-sea exchange).	The dominant current is geostrophic and therefore independent of the dominant processes driving air-sea exchange (For NS, MAB, SG, AP ≥53% geostrophic). Offshore geostrophic current opposes Ekman and Stokes components (SG) and so	Imbalance between cross- shelf exchange and air-sea exchange (bottle neck in offshore transport).
ΔpCO ₂ = air r	minus water pCO ₂	, t is time		increases in processes driving air-sea exchange imply reduced cross-shelf transport.	

Winter time $d\Delta pCO_2/dt$ gradients from Laruelle *et al.*, (2018)

Winter-time turbulent exchange and lower water temperatures are the dominant controller of annual atmosphere-ocean uptake of CO_2 within European shelf seas (Kitidis *et al.*, 2020).

d∆pCO₂/dt groups from Laruelle et al., (2018)	Seas from Laruelle et al., (2018)	Winter time cross-shelf exchange μ±σ (m s ⁻¹)	Winter time air-sea exchange μ±σ (10 ⁻⁶ m s⁻¹)	Observations of winter control of cross-shelf currents valid for the mixed layer	Implied conditions
High rate of increase (+2 µatm yr⁻¹)	North Sea (NS) Mid Atlantic Bight (MAB) Southern Greenland (SG), Antarctic Peninsula (AP)	NS 0.16 \pm 0.15 MAB -0.08 \pm 0.30 SG -0.13 \pm 0.16 AP 0.01 \pm 0.08 (weak to medium exchange)	NS 22.47 \pm 17.94 MAB 13.08 \pm 8.64 SG 18.39 \pm 17.17 AP 13.33 \pm 12.36 (medium to high air-sea exchange).	The dominant current is geostrophic and therefore independent of the dominant processes driving air-sea exchange (For NS, MAB, SG, AP ≥53% geostrophic). Offshore geostrophic current opposes Ekman and Stokes components (SG) and so increases in processes driving air-sea exchange imply reduced cross-shelf transport.	Imbalance between cross- shelf exchange and air-sea exchange (bottle neck in offshore transport).

Positive increase in $d\Delta pCO_2/dt$ implies a strengthening sink of CO_2 (and increasing ocean acidification)

d∆pCO₂/dt groups from Laruelle et al., (2018)	Seas from Laruelle et al., (2018)	Winter time cross-shelf exchange μ±σ (m s⁻¹)	Winter time air-sea exchange μ±σ (10 ⁻⁶ m s ⁻¹)	Observations of winter control of cross-shelf currents valid for the mixed layer	Implied conditions
Moderate rate of increase (e.g. +0.5 to 1.0 µatm yr ⁻¹)	Irminger Sea (IS), Labrador Sea (LS), Coast of Japan (CoJ), Cascadian Shelf (CS), South Atlantic Bight (SAB).	IS: -0.04 ± 0.09 LS 0.01 ± 0.18 CoJ 0.003 ± 0.17 CS -0.06 ± 0.14 (weak exchange) SAB -0.50 ± 0.56 (very high exchange)	IS: 17.19 ± 17.17 LS 21.89 ± 18.69 CoJ 18.72 ± 12.39 CS 12.19 ± 12.03 (medium to high air-sea exchange). SAB 5.47 ± 4.78 (low air-sea exchange)	The dominant cross-shelf current is geostrophic, and therefore independent of the dominant processes driving air-sea exchange (LS, CoJ ≥ 54% geostrophic). Surface current is offshore with high air-sea exchange (IS, CS) implying that a portion of the increased surface water carbon from high air-sea exchange is retained as no deep-water export.	Imbalance between cross- shelf exchange and air-sea exchange (bottle neck in offshelf transport).
Positive increase in $d\Delta pCO_2/dt$ implies a strengthening sink of CO_2 (and increasing ocean acidification)				Very high offshore surface current combined with low air- sea exchange (SAB). No deep-water export.	

d∆pCO₂/dt groups from Laruelle et al., (2018)	Seas from Laruelle et al., (2018)	Winter time cross-shelf exchange μ±σ (m s ⁻¹)	Winter time air-sea exchange μ±σ (10 ⁻⁶ m s ⁻¹)	Observations of winter control of cross-shelf currents valid for the mixed layer	Implied conditions
Nominal or no increase (in water pCO ₂ tracks atmosphere pCO ₂)	English Channel (EC), Barents Sea (BaS), Tasmanian Shelf (TS)	EC 0.01 ± 0.08 BaS 0.23 ± 0.13 TS 0.04 ± 0.12 (weak to high exchange)	EC 18.97 ± 19.00 BaS 12.14 ± 10.64 TS 22.53 ± 14.75 (medium to high air-sea exchange).	Equal dominance and additive geostrophic and Ekman cross- shelf currents (EC, TS), or high cross-shelf current that is geostrophic dominated and additive with Ekman and Stokes (BaS, 71%, 11%, 19%).	Cross-shelf exchange is balanced by air- sea exchange (no bottle neck).

nominal or no increase in $d\Delta pCO_2/dt$ implies a temporally constant sink

d∆pCO₂/dt groups from Laruelle et al., (2018)	Seas from Laruelle et al., (2018)	Winter time cross-shelf exchange μ±σ (m s⁻¹)	Winter time air-sea exchange μ±σ (10 ⁻⁶ m s ⁻¹)	Observations of winter control of cross-shelf currents valid for the mixed layer	Implied conditions
Moderate decrease (-0.2 to -1.1 µatm yr ⁻¹)	Patagonian shelf (PS), Bering Sea (BeS)	PS -0.17 ± 0.18 (high exchange)	PS 33.73 ± 18.81 (very high air-sea exchange).	Current is off-shelf implying that any increase in surface water carbon from elevated air-sea exchange is	Off-shelf surface exchange is faster than surface water
		BeS -0.003 ± 0.11	BeS 10.19 ± 8.14	immediately transported away	carbon
		(very weak exchange)	(low to medium air-sea exchange).	from shelf in surface waters.	accumulation.

decrease in $d\Delta pCO_2/dt$ implies a weakening sink

Conclusions

Imbalances in strength, between air-sea exchange and deep water export appear related to carbon accumulation in the 15 shelf seas with significant trends in winter-time pCO₂ gradient (as identified by Laruelle *et al.*, 2018).

Conclusions

Imbalances in strength, between air-sea exchange and deep water export appear related to carbon accumulation in the 15 shelf seas with significant trends in winter-time pCO₂ gradient (as identified by Laruelle *et al.*, 2018).

Shelf-seas exhibiting cross-shelf velocities within the mixed layer that are dominated by geostrophic flow (i.e. >50% geostrophic) will continue to accumulate carbon.

Conclusions

Imbalances in strength, between air-sea exchange and deep water export appear related to carbon accumulation in the 15 shelf seas with significant trends in winter-time pCO₂ gradient (as identified by Laruelle *et al.*, 2018).

Shelf-seas exhibiting cross-shelf velocities within the mixed layer that are dominated by geostrophic flow (i.e. >50% geostrophic) will continue to accumulate carbon.

Shelf seas where cross-shelf velocities within the mixed layer are strongly influenced by wind and wave induced currents could continue to track atmospheric values.

Cross-shelf exchange along the shelf edge

0.2

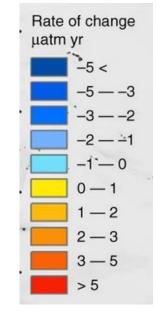
0.0

-0.2

0.4

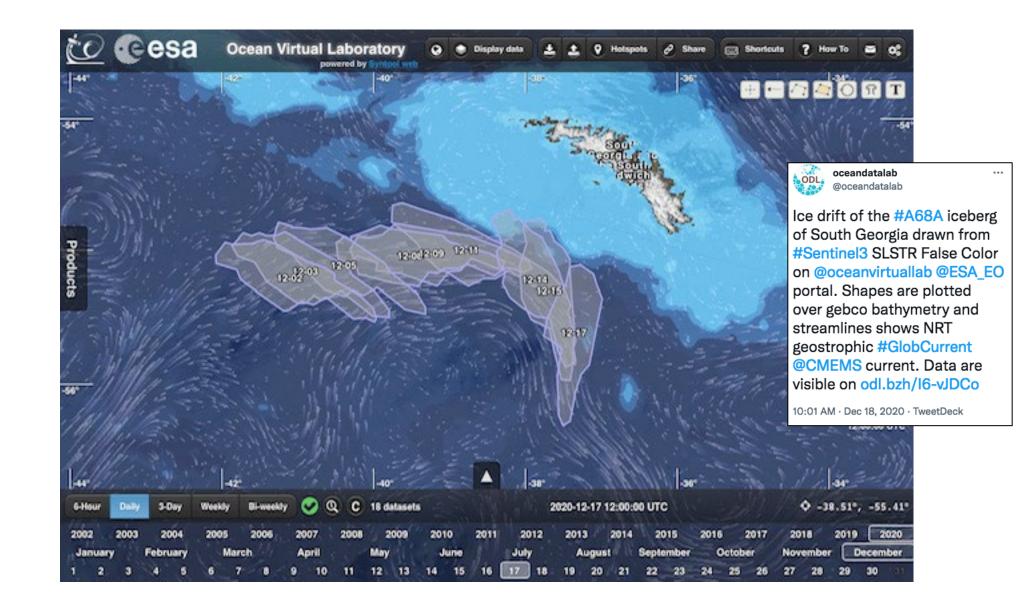
0.6

-0.8

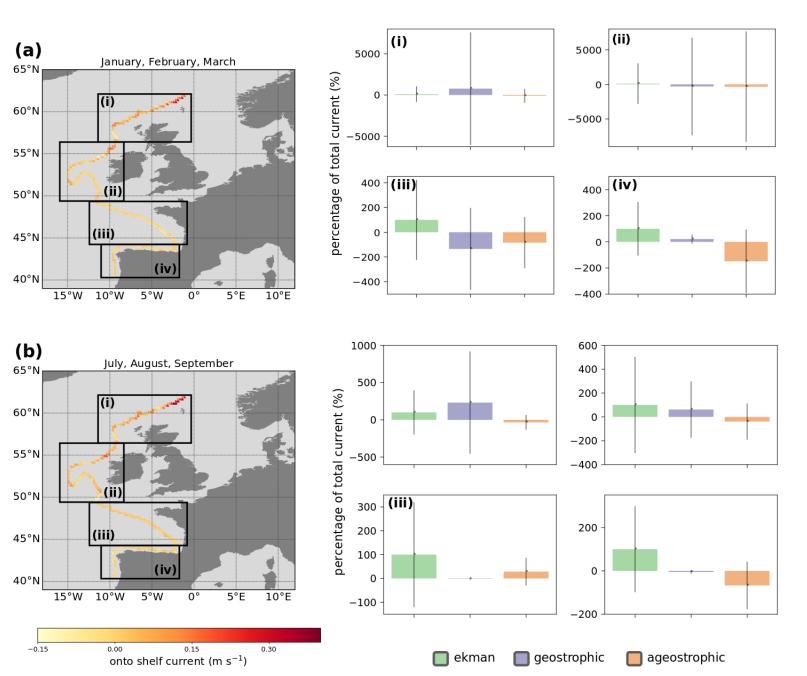

-1.0

-1.2

onto-shelf current *ms*⁻¹


Mid Atlantic bight

0.2 geostrophic stokes ekman 0.0 onto-shelf current ms -0.2 -0.4 -0.6 -0.8 -1.0aeostrophic -1.2stokes ekman Mid-Atlantic Bight **Mid-Atlantic Bight** -1.4600 800 1000 1200 1400 400 400 1200 1400 200 600 1000 0 200 800 0 distance along shelf (km, South to North) distance along shelf (km, South to North) 60°W 40°N 20 Mid-Atlantic Bight Avg: 1.93 (1.92) Std: 3.11 (3.19) of cells n: 76 (78) a 10 ₹ -30°N -5 uatm yr-1 С 70°W



January to March

July to September

Case study for European shelf using NATL60 CJM165 simulations (geostrophic, Ekman, residual assumed ageostrophic, as percentage of simulated total).

