A thermographic approach to measure the wind shear stress at the water surface

Philipp I. Voigt^{1(former),3,4} and Bernd Jähne^{1,2}

¹Institute of Environmental Physics (IUP), Heidelberg University, Germany ²Heidelberg Collaboratory of Image Processing (HCI), Heidelberg University, Germany ³Department of Earth Science - Quaternary geology and Paleoclimate Group, University of Bergen, Norway ⁴Bjerknes Centre for Climate Research (BCCR), Norway

philipp.voigt@uib.no

bernd.jaehne@iwr.uni-heidelberg.de

Overview

- Introduction
- Motivation
- Novel active thermographic method
- First results
- Outlook and conclusion

Introduction

Partitioning of the stresses at the surface:

- Form drag
 - wave build-up
 - delayed source of turbulence by wave breaking
- Viscous shear stress $au_{
 m visc} \propto \partial_z u$
 - direct turbulence generation in the shear layer
 - controls BL thickness δ
- Partitioning crucial for understanding the transfer mechanisms
- Air-sided: only wind speed measured (total stress)

(Bopp |20)

Introduction

Partitioning of the stresses at the surface:

- Form drag
 - wave build-up
 - delayed source of turbulence by wave breaking
- Viscous shear stress $au_{\text{visc}} \propto \partial_z u$
 - direct turbulence generation in the shear layer
 - controls BL thickness δ
- Partitioning crucial for understanding the transfer mechanisms
- Air-sided: only wind speed measured (total stress)

(Bopp |20

Motivation

Water-sided measurements of τ_{visc} :

- Imaging techniques:
 - direct,
 - but demanding, poor temporal resolution and invasive (field-conditions)
- Novel approach: active thermography
 - indirect,
 - but non-invasive, air-sided setup and temporal resolution of seconds

(Voigt [2021]) ⁵

Active thermographic method, principle

- Heating thin line perpendicular to the wind direction
- Monitoring the line width $\sigma(t)$ with an IR-Camera
- Taylor dispersion: enhanced broadening with increased τ_{visc}

Simulation of the problem

• Interpolate output to get shear stress as function of line width

(Voigt [2019]

wind

Facility and pilot setup

- The Aeolotron (Heidelberg Univ., Germany)
- Large annular wind-wave tank, diameter of 10 m

- NIR-laser: 1450 nm diodes, penetration depth: 320 microns, power: ${\sim}1~{\rm W~cm^{\text{-}1}}$
- Pulse duration: 10-15 ms, $\Delta T {\sim} 0.4~{\rm K}$
- Line length: 20-35 mm

(Voigt [2021], modif

Real world examples – individual lines

with waves

(Voigt [2019])

9

First results (large number of lines) - $u_{10} \approx 4.8 \text{ m/s}$

Time series, non-stationary conditions $(u_{10} \approx 2.4 \text{ m/s})$

(Voigt [2021]) ¹¹

BL thickness δ and surface velocity u_s

Outlook and conclusion

- Novel thermographic method for measurement of $\tau_{\rm visc}$ at low wind speeds
- Non-invasive, air-sided setup, field deployable and temporal resolution of seconds
- Promising results from pilot setups
- Systematic deployment with new laser planned at the Aeolotron

Further reading (open access):

- Voigt, P. I.: Simulation and Measurement of the Water-sided Viscous Shear Stress without Waves, Bachelor thesis, Institute of Environmental Physics, Heidelberg University, Germany, doi:10.11588/heidok.00026653, 2019.
- Voigt, P. I.: Investigation of the Water-Sided Shear Layer at a Wind-Driven Wavy Surface by Active Thermography, Master thesis, Institute of Environmental Physics, Heidelberg University, Germany, doi: 10.11588/heidok.00030834, 2021.

Figure references

- Bopp, M.: Air-Flow and Stress Partitioning over Wind Waves in a Linear Wind-Wave Facility, Dissertation, Institute of Environmental Physics, Heidelberg University, Germany, doi: 10.11588/heidok.00024741, 2018.
- Krall, K. E.: Laboratory Investigations of Air-Sea Gas Transfer under a Wide Range of Water Surface Conditions, Dissertation, Institute of Environmental Physics, Heidelberg University, Germany, doi: 10.11588/heidok.00014392, 2013.