

Global synthesis of air-sea CO₂ transfer velocity estimates from ship-based eddy covariance measurements

Mingxi Yang¹ (*miya@pml.ac.uk*)

Thomas G. Bell¹, Jean-Raymond Bidlot², Byron W. Blomquist^{3,4} Brian J. Butterworth^{3,4}, Yuanxu Dong^{1,5}, Christopher W. Fairall⁴, Sebastian Landwehr⁶, Christa A. Marandino⁷, Scott D. Miller⁸, Eric S. Saltzman⁹, Alexander Zavarsky⁷

¹PML, UK ²ECMWF, UK ³U. Colorado, USA ⁴NOAA PSL, USA ⁵UEA, UK ⁶Formerly at National University of Ireland Galway, Ireland ⁷GEOMAR, Germany ⁸U. Albany, USA ⁹U. Irvine, USA

A short history of gas exchange studies **1973** *Liss* Two layer model $flux = K \Delta C$

1986 *Liss & Merlivat* Different *K* v. *U* slopes and Sc exponents in different regimes

1986 Broecker et al. Eddy covariance (EC) with open path IR give CO_2 flux an order of magnitude too large

1987 Jaehne et al. Small scale waves matter: $K \propto u_* \operatorname{Sc}^n$, n from -2/3 to -1/2 **1992** *Wanninkhof* Global ¹⁴C disequilibrium K_{CO2} assumed to $\propto U^2$

1997 *Woolf* Bubble-mediated gas exchange more important for less soluble gas

1999 Wanninkhof & McGilllis EC (closed-path IR, not dried) $K_{CO2} \propto U^3$

2000 Nightingale et al. Dual tracer ³He/SF₆ Quadratic relationship between K and U; $n \cong -1/2$ A short history of gas exchange studies (continued) **2003** *Zhao & Toba.* Parametrize *K* with wave Reynolds number

2004 Frew et al.Active thermography:Small waves a better proxy of K than U as they account for surfactants

2004 Huebert et al. EC K_{DMS} vs. U power ~1 K > 0 at low U

2010 *Miller et al.* EC CO_2 flux measurements markedly improved by using closed path, dried IR analyzer **2014** Landwehr/Blomquist et al. Confirm benefits of drying the air in EC CO_2 flux measurements

2016 Butterworth & Miller First autonomous $EC CO_2$ flux measurements on ship

2017 *Bell/Blomquist et al.* $K_{CO2} > K_{DMS}$ at high U due to bubbles

2021 Yang et al. Strong evidence that natural surfactants modulate K_{CO2} over open ocean

This work

- Synthesis of the state-of-the-art shipboard CO_2 gas transfer velocity (K_{CO2}) measurements since 2007
 - Consistent flux averaging time interval (hourly)
 - Updated solubility and Schmidt number parametrization (Wanninkhof 2014)
 - Inclusion of cool skin effect on ΔC (Woolf et al. 2016)
- Assessment of measurement uncertainty
- Physical processes
 - Moderate wind
 - Low wind
 - Large and small waves
- Conclusion and outlook

Datasets

11 cruises from the last decade+ All used closed-path, dried CO_2 Analyzer (2000 h of data) $K_{660,CO2} = flux / \Delta C (660/Sc)^{-0.5}$

measurements

K₆₆₀

of

of hours

Most data at moderate wind speeds

Measurements in very low/high winds still limited (but >> other methods)

Results

- $K_{660,CO2}$ vs. wind speed (U_{10N})
- Ballpark agreement in K_{660,C02} among 8 datasets (11 cruises)
- At moderate to high wind speeds, CO₂ and dual tracer transfer similar, much higher than K_{660,DMS}
- K_{660,CO2} vs. wind speed relationship non-linear (but less than U²), and no obvious sign of 'leveling off' at high wind speeds

Results

- K_{660,CO2} vs. friction velocity (u_{*})
- Approximately linear relationship between K_{660,CO2} and u_{*} (between u_{*} of 0.1 and 0.5 m s⁻¹)
- At given u_{*}, K_{660,CO2} tends to be higher in N. Atlantic/Southern Ocean than in Arctic/tropics
- What causes regional variation in K_{660,CO2} among different cruises?

Variability and representativeness of sampling

Standard error (SE) within u_* bins increase with u_*

Rel. SE (SE/ K_{660bin}) highest at low/high u_* due to limited sampling

Rel. sdev (sdev / K_{660bin}) decreases with u_{*}

Assessment of uncertainty - 'Akinetic flux'

 $K_{660} = \text{flux} / \Delta C (660/Sc)^{-0.5}$

- Bias in well-processed EC flux should be small (<10%; Dong et al. 2021)
- Bias in ΔC generally thought to be <10% at sufficient |ΔC|
- Low $|\Delta C|$ data usually discarded in K_{660} calculation, a waste!

Akinetic flux = flux (660/Sc)^{-0.5} / u_* = $\Delta C K_{660} / u_*$ where the slope is ~transfer coefficient (K_{660} / u_*)

Low wind speed regime

 $K_{660,CO2} > K_{660,dualtracer}$ at low u_* by ~4 cm hr⁻¹, possibly because of

- Chemical enhancement in CO₂ (ca. 1-2 cm hr⁻¹, Wanninkhof 1992)
- Assumption of K = 0 in dual tracer fit, when convective driven turbulence may result in ca. 1-2 cm hr⁻¹ at U=0 (COARE model)
- Uncertainty in Schmidt number exponent as f(*U*, surfactants, e.g. Esters et al 2017)

Importance of small waves - Mean squared slope

Mean squared slope of small waves helps to collapse some of the scatter at low to moderate wind speeds (consistent with Frew et al. 2004)

Grand average of EC $K_{660,CO2}$ x global wind distribution gives a global mean $K_{660,CO2}$ of ~ 20 cm hr⁻¹ - in agreement with latest ¹⁴C-based estimates - ~20% higher than implied by dual tracer

Naegler 2009

Key take home messages from first synthesis of $K_{660,CO2}$ from EC flux measurements

What we know:

- Uncertainty/variabili
 - Rsdev (RSE) 20% (7
 - Absolute uncertain while relative unce
- U dependence & m
 - $K_{660,CO2}$ scales ~line winds and $< U^2$ ove
 - $K_{660,C02} >> 0$ in low v
 - < K_{660,CO2} > consiste
- Waves matter
- See Bell et al. talk on - Parametrization of *K* with scattering Wave Reynolds number and mean squared slope help to collapse variability in $K_{660,CO2}$ in high and moderate winds, respectively

What remains unclear:

- See Yang et al. poster on
 - Surfactants

See **Dong** et al. posters on - EC flux uncertainty - Southern Ocean EC CO₂ flux and K

ubbles

bubbles towards K_{660,CO2} ninant (COARE model) to e & Melville 2018) to et al.2019)

1) shows that surfactants _{60,CO2} by 30% at *U* of 7 m s⁻¹ bility among cruises?

```
er descriptor of K<sub>660.CO2</sub>?
```

waves/surfactants/bubbles all in one go, with satellite scalability?

small

CRUISE ID	TIME	SHIP	REGION	CO2 ANALYZER	N > 20 (30) µАТМ	MEAN SST	ORIGINAL REFERENCE	Cruise ID	K660 fit to u∗ (bin-averages)	K660 fit to u∗ (hourly data)	r ² of hourly fit	Min/median/max in ∆fCO2	In-situ U _{10n} vs. ECMWF U _{10n}
Knorr- 07(a/b)	Jun- Jul 2007	Knorr	North Atlantic	Modified LI- COR Li-7500	61 (61)	13	Miller et al. 2009	Knorr- 07(a/b)	-2.7 + 103.1 <i>u</i> *	-0.2 + 91.1 <i>u</i> *	0.48	-122/-51/-36	0.46 + 0.97 U_{10n} ECMWF
Knorr-11	Jun- Jul 2011	Knorr	North Atlantic	Modified LI- COR Li-7500	215 (215)	10	Bell et al. 2017	Knorr-11	-4.3 + 105.8 <i>u</i> *	-5.7 + 112.2 <i>u</i> *	0.58	-110/-50/-35	$0.96 + 0.96 \\ U_{10n}$ ECMWF
SOAP	Feb- Mar 2012	Tangaroa	Southern Ocean (temperate)	Modified LI- COR Li-7500	220 (220)	15	Landwehr et al. 2018	SOAP	-2.9 + 83.2 <i>u</i> *	-7.7 + 96.2 <i>u</i> *	0.72	-130/-54/-36	1.91 + 0.88 U_{10n} ECMWF
NBP- 1210/1402	Jan- Feb 2013; Feb- Mar	Palmer	Southern Ocean (polar)	LI-COR Li- 7200	302 (302)	0	Butterworth & Miller 2016	NBP- 1210/1402	-4.7 + 88.8 <i>u</i> *	-3.2 + 85.3 <i>u</i> *	0.51	-250/-55/24	0.43 + 0.99 U_{10n} ECMWF
HiWinGS	2014 Oct- Nov 2013	Knorr	North Atlantic	Picarro G1301-f (LI- COR Li-	530 (467)	10	Blomquist et al. 2017	HiWinGS	-2.7 + 94.6 <i>u</i> *(- 4.4 + 104.3 <i>u</i> *)	-4.3 + 99.8 <i>u</i> * (-6.8 + 111.9 <i>u</i> *)	0.40 (0.37)	-63/-41/-11	0.33 + 0.96 U_{10n} ECMWF
SO-234/235	Jul- Aug 2014	Sonne	Tropical Indian	7200) LI-COR Li- 7200	86 (44)	25	Zavarsky et al. 2018	SO-234/235	-0.3 + 58.2 <i>u</i> * (- 3.3 + 77.1 <i>u</i> *)	-2.0 + 66.9 <i>u</i> * (-1.9 + 72.0 <i>u</i> *)	0.54 (0.67)	-49/9/40	-0.45 + 1.13 U_{10n} ECMWF
ANDREXII	Feb- Apr 2019	James Clark Ross	Southern Ocean (subpolar)	Picarro G2311-f	289 (199)	1	Yang et al. 2021	ANDREXII	-2.0 + 94.0u*	-4.8 + 100.0 <i>u</i> *	0.46	-87/-12/76	0.16 + 1.01 U_{10n} ECMWF
JR18007	Aug 2019	James Clark Ross	Arctic	Picarro G2311-f	278 (278)	6	Dong et al. 2021	JR18007	-4.5 + 79.0u*	-3.8 + 78.1 <i>u</i> *	0.72	-183/-122/-64	0.50 + 0.97 U_{10n} ECMWF

Distributions of waves

Citations