Wind, *buoyancy* and fetch dependent gas transfer velocity in an Arctic sea-ice lead determined from eddy covariance CO_2 flux measurements

John Prytherch

Dept. of Meteorology (MISU), Stockholm Uni.

+ many collaborators including:
Brett Thornton, IGV, Stockholm Uni.
Margaret Yelland, NOCS, UK
Ian Brooks, Uni. Leeds, UK
Michael Tjernström, MISU, Stockholm Uni.

k in sea-ice regions: challenges

Loose et al., 2017, JGR

k in sea-ice regions: observations

Loose et al., 2017, JGR

k in sea-ice regions: observations

Prytherch et al., 2017, GRL

Prytherch et al., 2017, GRL

Butterworth and Miller, 2016, GRL

k in sea-ice regions: impacts

Data-based (self-organizing map inc' SOCATv4 fCO₂ and chl-a) Arctic Ocean flux estimate

Enhanced k in sea ice (Loose et al., 2009): 180 ± 130 Tg C yr⁻¹ (~12% net global uptake) Linearly scaled k in sea ice: 130 ± 110 Tg C yr⁻¹

Yasunaka et al., 2018, Bg

Arctic Ocean 2018 expedition

photo: L. Lehnert.

open lead measurement site

Oden's mooring

Stockholm University

Open lead 2.5 m flux tower

Lead surface temperature sensor (IR) Closed-path (CO_2) and openpath (H_2O) IR gas analysers Heated 3D sonic anemometer

pCO₂w sensor

12V / 24V battery power

Lead dimensions and flux footprint

2D footprint model (Kljun et al., 2015, GMD)

Use footprint surface fraction (FP) analysis to determine flux (F) through lead water.

$$F_{measured} = F_{water} * FP_{openlead} + F_{vater} * FP_{openlead}$$

ice

 F_{ice} determined from average of $F_{measured}$ when FP_{ice} = 100%

ice

Prytherch & Yelland, 2021, GBC

oniversit

Stockholm University

Fetch dependence

- Relatively large fetch and high winds: small breaking waves and whitecaps observed.
- Fetch dependence is FP model-dependent.
- No FP model validated in a sea-ice environment.

Stockholm University

Buoyancy

$$B = H^* g \alpha C_p^{-1} \rho^{-1}$$

 $H^* = SHF + LHF + LW + SW$ e.g. MacIntyre et al., 2009 L&O

Ð

(+ve l ≥

Conclusions

- Observed wind-speed dependent k in a sea-ice lead, but reduced ~30% relative to typical ocean values
- Buoyancy-driven enhancement of k observed during surface cooling periods associated with clear-sky conditions
- Relating fluxes, forcing and measurements across a range of scales is a challenge

Poster: preliminary sea-ice lead chamber flux measurements

Thanks for listening!

Challenges of working on sea ice

Flux mast aluminium boxes

Pressure ridge forming

Ice camp floe

Sheared-off shackle on ice anchor

SWERUS-C3 gas transfer rate

Siberian shelf seas, 2014

Open ocean CO_2 fluxes (k) agree with bulk parameterisations.

CH₄ fluxes from seeps: footprint vs pCH₄w measurement location

Only ship-based EC CO₂ flux measurements in Arctic sea ice

Flux through ice surface and melt ponds estimated.

Prytherch et al., 2017, GRL

Icebreaker Oden eddy covariance CO₂ CH₄ flux system

- Operational since 2014 (5 Arctic expeditions to date ...)
- Motion-corrected winds (Edson et al., 1998, JTech; Prytherch et al., 2015, ACP)

