

Simulation of high-intensity isotropic turbulence driven gas transfer

H. Herlina¹, and J.G. Wissink² - herlina.herlina@kit.edu

¹ Institute for Hydromechanics, KIT ² Brunel University London

Isotropic turbulence driven gas transfer

Turbulence driving mechanisms

- Wind-shear
- Buoyancy
- Bottom-shear

Isotropic turbulence driven gas transfer

Turbulence driving mechanisms

Wind-shear

stream flow, low wind condition

http://repindonesiaraya.blogspot.de/2011/04/sungai-dan-letaknya.html

Isotropic turbulence

Parameterization

- Transfer velocity K_L
 - $j = K_L(C_{interface} C_{bulk})$
- Empirical and semi-empirical :
- Detailed measurements :
 - $j = -D\partial \langle c \rangle / \partial z + \left\langle c' w' \right\rangle$
 - $\rightarrow \text{difficult}$
- Numerical simulations : Most DNS are limited to Sc ≤ 10 (while Sc of e.g. oxygen ≈ 500).

http://repindonesiaraya.blogspot.de/2011/04/sungai-dan-letaknya.html

(1) Herlina&Jirka 2008

Aim and scope

Simulation result: isosurface of 50% concentration saturation (Sc = 20)

- Generate highly-accurate data of the near surface flow and gas transfer dynamics using direct numerical simulations at realistic Schmidt numbers.
- ightarrow How are the dynamcis of the 3D vortical structures?
- ightarrow How is the instantaneous correlation between gas flux and near surface flow?
- \rightarrow How does K_L scale with the turbulent Reynolds number R_T ?

Numerical approach

Direct numerical simulations (DNS):

The set of equations (for fluid flow and scalar transport)

$$\frac{\partial u_i}{\partial x_j} = 0; \quad \frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 u_i}{\partial x_j \partial x_j}$$
$$\frac{\partial c}{\partial t} + \frac{\partial u_j c}{\partial x_j} = \frac{1}{ReSc} \left(\frac{\partial^2 c}{\partial x_j \partial x_j}\right)$$

is solved without any turbulence model.

This means all length and time scales need to be resolved.

- \rightarrow We use the **in-house KCFIo**⁽²⁾ **code**, which was specifically designed for resolving details of the gas transfer on a computational feasible mesh size.
- $\rightarrow\,$ Dual meshing: Gas concentration field is resolved on a finer mesh than the base-mesh used to resolve the velocity field.

Computational set-up

- Boundary conditions: Top: free-slip (clean) Side: periodic Bottom: flow-field copied from isobox $C_{interface} = C_s(saturated)$ Bottom: $\partial c / \partial z = 0$
- Turbulent Reynolds number in the upper bulk $R_T = u_{\infty} 2L_{\infty} / v$
- Schmidt number $Sc = \nu / D$

R _T	Sc	Domain	Mesh Size	f _{RS}	L
1440 - 1856	20; 500	20L imes 20L imes 5L	$1024 \times 1024 \times 500$	1;5	pprox 1 cm

7 GTWS8 17-20 May 2022, Herlina:

Dynamics of vortical structures

Vortical structures

- At the bottom of domain, initially 'randomly' oriented vortical structures.
- Approaching the surface the flow becomes more and more 2D, and
- the vortical structures become either align or orthogonal to the surface.

Vortical structures and K_L

- Horizontally aligned slender vortical structures are found near the edges of high K_L -areas.
- Surface attached vortical structures are generally found in relatively low K_L-areas.

Vortical structures

- Significantly more vortical structures in the higher R_T case.
- Significantly more fine-scale structures.

Correlation between gas flux and surface divergence

Surface divergence (β) and K_L at high R_T

Previous studies⁽³⁾ confirmed that the surface divergence model, $K_L = c_\beta \sqrt{D\beta_{rms}}$, (although c_β varies).

- Here, footprints of size $\approx L_{\infty}$ show a good correlation between K_L and β .
- Footprints of fine-scale structures?

⁽³⁾ e.g. McKenna & McGillis 2004; Magnaudet & Calmet 2006; Kermani et al. 2011;Turney 2016; Wissink & Herlina 2016

Surface divergence (β) and K_L at high R_T

(zoomed-in view, $2L_{\infty} \times 2L_{\infty}$)

- Turbulence footprints of size ≈ L_∞ seen in K_L and β show a good correlation.
- Footprints of fine-scale structures are more clear in K_L contour than in β contour.
 - \rightarrow due to the difference in diffusivity.

Surface divergence (β) and K_L at high R_T

(zoomed-in view, $2L_{\infty} \times 2L_{\infty}$)

- Turbulence footprints of size $\approx L_{\infty}$ seen in K_L and β show a good correlation.
- Footprints of fine-scale structures are more clear in K_L contour than in β contour.
 - \rightarrow due to the difference in diffusivity.

- High Reynolds number (R_T)
 - \rightarrow more fine-scale structures
 - $ightarrow
 ho(eta, {\it K_L})$ reduces
 - \rightarrow affects the applicability of the surface divergence model at high R_T

(in agreement with Turney & Banerjee 2013).

Scaling of K_L with R_T

Scaling of transfer velocity

Two-regime model⁽⁴⁾ : Large eddy : $K_L \propto u_\infty Sc^{-1/2} R_T^{-1/2}$ Small eddy : $K_L \propto u_\infty Sc^{-1/2} R_T^{-1/4}$

 R_T is independent of the source of turbulence generation.

- Data confirms that at high R_T , mass transfer scales with the small-scales.
- Data confirms two-regime model.
- Data agree with the upper bound of KG04⁽⁵⁾ experimental data

⁽⁴⁾ Theofanous et al. 1976, 1984, ⁽⁵⁾ McKenna&McGillis 2004, ^(HW14) Herlina&Wissink 2014

Scaling of transfer velocity

Two-regime model⁽⁶⁾:

Large eddy : $K_L \propto u_\infty Sc^{-1/2} R_T^{-1/2}$ Small eddy : $K_L \propto u_\infty Sc^{-1/2} R_T^{-1/4}$

 R_T is independent of the source of turbulence generation.

No-slip cases (severely contaminated surface) - also two-regimes with transition at $R_T \approx 500$

$$K_L \propto u_\infty Sc^{-2/3} R_T^{-1/3}$$

$$K_L \propto u_\infty Sc^{-2/3} R_T^{-1/4}$$

⁽⁶⁾Theofanous et al. 1976, 1984, ^(HW14)Herlina&Wissink 2014, ^(HW16)Herlina&Wissink 2016

17 GTWS8 17-20 May 2022, Herlina:

Summary

DNS of gas transfer at *Sc* up to 500 driven by high-intensity ($R_T = 1440 - 1856$) isotropic turbulence across a flat, clean interface:

- Surface parallel vortical structures contribute to vertical mixing, while surface-attached structures, merely mix already saturated fluid in the horizontal direction.
- Correlation between surface divergence β and K_L was found to become worse with increasing R_T.
- The importance of small-scale turbulent structures for $R_T \gtrsim 500$ was confirmed by the scaling

$$K_L Sc^n / u_\infty \propto R_T^{-0.25}.$$

Combining the present results with our previous DNS, the existence of the small- and large-eddy regimes was confirmed numerically.

Deutsche Forschungsgemeinschaft (DFG)

Leibniz-Rechenzentrum (LRZ)

Helmholtz Water Network

Supplementary

Some numbers

Isotropic turbulence driven mass transfer, $R_T = 1440 - 1856$

- Domain size : 20L x 20L x 5L (L≈1cm)
- Base mesh : 1024 x 1024 x 500 (524 × 10⁶ grid points)
- Refined mesh : 5120 x 5120 x 2500 (65.5 × 10⁹ grid points)
- Number of processors : 20992
- Sc: 20, 500 (Refine=1, 5)
- On SuperMUC cluster at LRZ in Munich.
- Computation speed : 2.2 wall-clock /time-unit (only flow), 13 wall-clock /time-unit (scalar refine 5)
- Total disk space : 6.3TB
- Total CPUh : 18 × 10⁶

The Navier Stokes eqn is solved through direct numerical simulations using the in-house KCFlo code. The KCFlo code was specifically

designed for resolving details of the gas transfer on a *computational - feasible* mesh size, while avoiding spurious oscillations of the scalar quantity.

- <u>Flow solver:</u> 4th-order kinetic energy conserving discretisation for convection and 4th-order central discretisation for diffusion.
- <u>Scalar solver</u>: 5th-order WENO (Liu et al. 1994) for convection and 4th-order central discretisation for diffusion.

Dual-meshing strategy

Near the interface : grid size is determined by the smallest of the viscous, thermal and gas boundary layer thicknesses (δ).

High Sc scalar field solved on a finer mesh than temperature and velocity field.

Kubrak, Herlina, Greve, Wissink JCP 2013

23 GTWS8 17-20 May 2022, Herlina:

Limitation of experiments

- difficulties in resolving the uppermost diffusive layer due to optical blurring and some degree of surface contamination
- quantification of c'w' becomes unreliable after z > 1.5 mm most likely due to insufficient laser intensity in the deeper bulk region
- only 2D information

24 GTWS8 17-20 May 2022, Herlina:

Turbulent mass flux

 $L \approx 1 \mathrm{cm}$

25 GTWS8 17-20 May 2022, Herlina: