

MANCHESTER 1824

The University of Manchester

Airborne observations over the North Atlantic Ocean reveal urea is a missing component of atmospheric reduced nitrogen

Emily Matthews¹, Thomas J. Bannan¹, Anwar Khan², Dudley Shallcross², Harald Stark³, Eleanor Browne⁴, Alexander Archibald⁵, Archit Mehra¹, Stéphane Bauguitte⁶, Chris Reed⁶, James Lee⁷, Lucy Carpenter⁷, Grant Allen¹, Carl J. Percival⁸, Gordon McFiggans¹, Martin Gallagher¹ and Hugh Coe¹

- 1) Department of Earth and Environmental Sciences, University of Manchester, UK
- 2) School of Chemistry, University of Bristol, UK
- 3) Aerodyne Research, Inc., Billerica, Massachusetts 01821, United States
- 4) University of Colorado, CIRES, US
- 5) Department of Chemistry, University of Cambridge, UK
- 6) FAAM, University of Leeds, UK
- 7) Department of Chemistry, University of York, UK
- 8) Jet Propulsion Laboratory, NASA, California, US

Iodide ion chemical ionisation mass spectrometer (I-CIMS)

Main Species Measured:

Halogens (e.g. BrO, BrOH, ClO, ClOH, ClNO₂, Cl₂)

- Impact air quality and ozone formation
- Important oxidizers for tropospheric chemistry

Biomass Burning Markers (e.g. HCN/HCNO)

- Impact air quality
- Sources of greenhouse gases

Organic Acids (e.g. Acetic/Lactic/Formic Acid)

- Important for new particle formation
- Impact Earth's radiation budget

Nitrates (e.g. HONO, HNO₃, N₂O₅)

- Key role in night-time tropospheric chemistry
- Important for aerosol formation
- Impact ozone formation

Hydrocarbons (e.g. Isoprene/Terpene oxidation products)

• Important for secondary organic aerosol (SOA) formation

Aircraft Campaigns

ACSIS: North <u>A</u>tlantic <u>C</u>limate <u>System</u> <u>Integrated S</u>tudy

- Focuses on understanding recent changes in the ocean, the atmosphere (including its composition), the cryosphere and the interactions between these constituent components
- Profiling over the North Atlantic Ocean from 200-8000 m above the ocean
- 4 aircraft campaigns with I-CIMS; ACSIS-4 (February 2019), ACSIS-5 (August 2019), ACSIS-6 (February 2020) and ACSIS-7 (May 2022)

Aircraft Campaigns

ACRUISE: <u>A</u>tmospheric <u>C</u>omposition and <u>R</u>adiative forcing changes due to <u>U</u>N <u>International <u>S</u>hip <u>E</u>missions regulations</u>

- In 2015 the International Maritime Organization (IMO) ordered a reduction in the maximum ship sulphur emissions in coastal Sulphur Emission Control Areas (SECAs) of Europe and North America
- ACRUISE aims to quantify the impact on atmospheric chemistry and climate due to the new IMO regulations
- 2 Aircraft campaigns with I-CIMS; ACRUISE-2 (September 2021) and ACRUISE-3 (May 2022)

Aircraft Campaigns

MOYA: <u>Methane</u> <u>Observations</u> and <u>Yearly</u> <u>Assessments</u>

- Aims to move towards closing the global methane budget through the undertaking of new observations and further analysis of existing data
- 1 aircraft campaign with I-CIMS in January 2019 over East Africa
- Various environments surveyed; agricultural lands, biomass burning events, lakes, urban and wetlands

Atmospheric Urea

- Urea has shown to contribute a significant proportion of water soluble organic nitrogen (WSON) in both aerosols and rainwater
- Natural sources primarily arise from marine biological activity
- Anthropogenic sources include animals, fertilisers, industrial waste and biomass burning
 Currently, no reported ambient

Currently no reported ambient measurements of gas-phase urea

Large signal at m/z 187

- Identified a large signal at m/z 187 that is dominated by urea and not acetic acid
- Worked to calibrate and verify measurements

A significant ocean source

- Enhancements of urea were frequently observed within the atmospheric marine boundary layer (MBL) across the North Atlantic
- Ubiquitous across the lower troposphere and in significant quantities
 - \circ Frequently exceeding 100 pptv
 - Similar mixing ratios to DMS
- Strong seasonality; winter average = 95 pptv, summer average = 310 pptv, spring average = 15 pptv*
- Most abundant in air masses with warm and moist properties and as such indicates an ocean source

- Vertical distribution driven by local physical state of the atmosphere
 - Consistent for a trace gas originating from the sea-water surface

- Vertical distribution driven by local physical state of the atmosphere
 - Consistent for a trace gas originating from the sea-water surface
- In presence of frontal systems (i.e. jet streams), urea is observed to be mixed throughout the atmospheric column

- Vertical distribution driven by local physical state of the atmosphere
 - Consistent for a trace gas originating from the sea-water surface
- In presence of frontal systems (i.e. jet streams), urea is observed to be mixed throughout the atmospheric column
- In regions with a constrained MBL, urea enhancements are confined to the MBL

- Vertical distribution driven by local physical state of the atmosphere
 - Consistent for a trace gas originating from the sea-water surface
- In presence of frontal systems (i.e. jet streams), urea is observed to be mixed throughout the atmospheric column
- In regions with a constrained MBL, urea enhancements are confined to the MBL

Biomass Burning – An additional source

- During ACSIS-6 (Feb 2020) observed enhancements in both the BL and FT over the tropical North Atlantic ocean
- Region dominated by biomass burning and dust outflow from continental Africa
- Enhancements of urea in the FT were observed exclusively in the presence of biomass burning plumes
- Age of plumes 6-8 days (Lee et al., 2021)

Aged fire plumes over tropical North Atlantic (grey shaded regions)

Urea Partitioning

- High Henry's Law coefficient: 1 x 10⁹ M atm⁻¹ (Sanders, 2015)
- Low vapour pressure: 2 × 10⁻⁸ atm (Glasoe et al., 2015)

Mechanisms responsible for the exchange of urea from the seawater surface to the atmosphere?

Urea Partitioning

- High Henry's Law coefficient: 1 x 10⁹ M/atm (Sanders, 2015)
- Low vapour pressure: 2 × 10⁻⁸ atm (Glasoe et al., 2015)
- Compared our observations against reported urea concentrations in aerosol phase and surface seawater
- Gas phase measurements consistent with equilibrium partitioning based on literature particulate concentrations
- Large surface enhancements required to explain observations

Observation	Urea conc.	Conc. in liquid water	Reference
Atmosphere - Gas phase	230 ppt	0.26 mol L ⁻¹	This study
Atmosphere - Particulate phase	9 nmol N m ⁻³	3.9 mol L ⁻¹	(Zamora et al., 2011)
Seawater surface	300 nmol L ⁻¹	30-300 umol L ⁻¹	(Painter et al.,2008)

Urea Partitioning

- Under dry conditions and low relative humidity most of the urea is in the gas phase.
- At humidities above 95% and in cloud atmospheric urea exists almost exclusively in the aqueous phase.

Observation	Urea conc.	Conc. in liquid water	Reference
Atmosphere - Gas phase	230 ppt	0.26 mol L ⁻¹	This study
Atmosphere - Particulate phase	9 nmol N m ⁻³	3.9 mol L ⁻¹	(Zamora et al. <i>,</i> 2011)
Seawater surface	300 nmol L ⁻¹	30-300 umol L ⁻¹	(Painter et al.,2008)

Global burden of urea

- A suite of model simulations were conducted to assess
 - (i) the possible source signature of urea using DMS as an ocean emission and NH₃ for anthropogenic emissions
 - (ii) the impact of individual loss processes on the mixing ratios of urea
 - (iii) the global burden of urea and its contribution to the total reduced nitrogen
- Physical loss processes dominate loss process
 - 50% due to wet deposition and 32% from dry deposition
- Lifetime greater than NH₃
- Increase reduced nitrogen budget by ~50% for BASE case

Model simulations work of Dr. Anwar Khan

	BASE	BASE_ WODD	BASE_ WOWD	ANTH	OCEAN	ANTH_ WOWD	OCEAN_ WOWD
Emissions (Tg N/yr)	93.3	93.3	93.3	37.1	56.2	37.1	56.2
Losses (Tg N/yr)							
Reaction by OH	16.8	25.6	44.2	6.1	5.3	15.6	21.4
Dry deposition	30.0	n/a	48.9	13.9	17.5	21.4	34.6
Wet deposition	46.2	67.4	n/a	17.0	33.2	n/a	n/a
Global burden (Tg N)	0.26	0.42	0.93	0.13	0.16	0.45	0.82
Lifetime (days)	1.0	1.6	3.7	1.3	1.0	4.4	5.4

BASE = Ocean + Anthropogenic source WODD/WOWD = without dry/wet deposition

Urea – an important component of the global nitrogen cycle

- Our measurements show urea is ubiquitous throughout the remote marine environment
- Observations and model simulations indicate that urea has a relatively long atmospheric lifetime
- Atmosphere provides an important pathway for the redistribution of reduced nitrogen at rates and scales far greater than ocean transport

Summary

- Ubiquitous throughout the lower troposphere and often high in concentration (similar to DMS)
- Seasonality: Summer > Winter > Spring
- Evidence for long-range transport during:
 - Frontal transport systems
 - Transport of biomass-burning plumes over the remote marine environment
- Modelling studies suggest that presence of gas-phase urea in the atmosphere increases the reduced nitrogen budget by ~50%
- Urea readily partitions between gas and particle phases
- Need further studies to constrain the role of urea in models and to understand the processes driving the significant presence of urea in the marine environment

emily.matthews@manchester.ac.uk