Mechanisms controlling air-sea CO₂ exchange in the Baltic Sea

Lucía Gutiérrez-Loza, Erik Nilsson, Marcus B. Wallin, Erik Sahlée and Anna Rutgersson

8th International Symposium on Gas Transfer at Water Surfaces, Plymouth, UK

IN CONTEXT

- Large uncertainties in global
 FCO₂ are associated with k
- Wind speed accounts for ~80% of the variability in k
- At local and regional scales the variability in k is larger

IN CONTEXT

- Large uncertainties in global
 FCO₂ are associated with k
- Wind speed accounts for ~80% of the variability in k
- At local and regional scales the variability in k is larger

Partial Least Squares (PLS) Analysis

What else can we learn about the variability?

We use 9 years of in-situ data from the Östergarnsholm station in the Baltic Sea:

- CO₂ fluxes from eddy covariance
- Water pCO₂ measurements
- Monitoring of atmospheric and water-side conditions

OBJECTIVES

- Study the behavior of the air-sea CO₂ fluxes in the marine environment
- Explore the effect of forcing mechanisms on the CO₂ fluxes

THE BALTIC SEA

AND THE ÖSTERGARNSHOLM STATION

WHY TO STUDY THE BALTIC SEA?

Coastal and marginal seas are an essential piece of the global carbon cycle. A better **understanding of the contributions and variability of the air-sea CO₂ fluxes** in these regions is necessary.

The Baltic Sea:

- Dynamic carbon system with large spatio-temporal variability
- Available research addressing the variability of the elements of the carbon system
- Test field relevant to other environments
- The Östergarnsholm station for long-term monitoring and research

THE ÖSTERGARNSHOLM STATION

The land-based tower is instrumented to study the **marine atmospheric boundary layer** and **air-sea interaction processes**.

- Meteorological station + flux tower
- Coastal station \rightarrow open sea + coastal conditions
- Complementary water-side observations

CARBON

ICOS

THE SEASONAL FCO₂ VARIABILITY AND GAS EXCHANGE CONTROL MECHANISMS

THE SEASONAL VARIABILITY OF FCO₂

- The variability in Δ*pCO*₂ is driven by changes in the water-side pCO₂
- Increasing trend in the atmospheric pCO₂
- Increasing amplitude in the seasonal cycle of seawater pCO₂

THE SEASONAL VARIABILITY OF FCO₂

THE GAS TRANSFER VELOCITY (k_{660})

- Our data shows good agreement with wind-based parameterizations
- Understanding the effect of other mechanisms will improve our ability to explain the flux variability

THE GAS TRANSFER VELOCITY (k_{660})

- Our data shows good agreement with wind-based parameterizations
- Understanding the effect of other mechanisms will improve our ability to explain the flux variability

If everything fails... USE THE WIND SPEED

HOW TO EXPLAIN THE REST OF THE VARIABILITY?

Residual gas transfer velocity:

$$k_r = k_{660} - k_{wind}$$

HOW TO EXPLAIN THE REST OF THE VARIABILITY?

Residual gas transfer velocity:

$$k_r = k_{660} - k_{wind}$$

Each variable is divided in quartiles:

High wind speed conditions $(U_{10N} > 8 \text{ m/s})$

•

High wind speed conditions $(U_{10N} > 8 \text{ m/s})$

Follow (more-or-less) the story line:

- Gas transfer velocities lower than k_{wind}
- Under a variety of conditions
- Still trying to dis-entangle the effect of the different mechanisms

- Low relative humidity
- Unstable atmospheric conditions
- Positive ΔpCO_2

```
...only in winter
```

- Importance of capturing the seasonality
- Possible impact of atmospheric-side control mechanisms
- Asymmetric effect on FCO₂

High wind speed conditions $(U_{10N} > 8 \text{ m/s})$

...maybe sea spray?

Can sea spray also enhance FCO_2 under particular atmospheric and oceanic conditions?...

Low wind speed conditions $(U_{10N} < 6 \text{ m/s})$

- Larger uncertainties
- Large heterogeneity at low mixing conditions (summer)
- Other relevant processes (e.g. surfactants)
- ... water-side convection!

SUMMARY

- These "long records" are a great monitoring effort that opens the possibility to study the effect of relevant mechanisms on FCO₂
- Wind-based parameterizations are able to represent the longterm averages of k in the study site...and potentially other coastal regions
- Winter-time conditions can promote large efflux events
- Possible (direct or indirect) effect of atmospheric conditions on FCO₂
- Asymmetric effect on FCO₂

Gutiérrez-Loza, L., Nilsson, E., Wallin, M. B., Sahlée, E., & Rutgersson, A. (2022). On physical mechanisms controlling air-sea CO₂ exchange. *Biogeosciences Discussions*, 1-24.

Thank you!

THE ÖSTERGARNSHOLM STATION AND MEASUREMENTS

HISTOGRAMS

High wind speed conditions

Water-side control mechanisms

- Higher (and younger) waves occur at high wind speed
- k_{660} follows the wind-based parameterization when ΔpCO_2 is large
- At lower ΔpCO_2 , additional mixing is necessary

High wind speed conditions

- Atmospheric controls are to often taken into account
- Large k_{660} occur under unstable conditions when large enthalpy flux and low RH

Atmospheric control mechanisms