

Measurement of surface-cooling induced gas-transfer using luminescence oxygen imaging technique

Erni Murniati¹⁾

A. Philippe²⁾, O. Eiff¹⁾, and H. Herlina¹⁾

The 8th International Symposium on Gas Transfer at Water Surfaces

Plymouth UK, 18th May 2022

¹⁾ Institute for Hydromechanics (IfH)

²⁾ iES Landau, Working Group Environmental and Soil-Chemistry

Surface cooling induced gas transfer

Imaging technique as an important tool to study fundamental mechanisms of transport processes

O₂ imaging applications in flowing waters

 k_{SV} : Stern-Volmer constant

LIF apps. review in Crimaldi, J.P. (2008) and Rüttinger, et al. (2018) Applications: planar- (water surface) and curved-interface (bubble)

Time scale: ms - s

 I_0 , τ_0 : intensity, lifetime in the absence of O₂

Luminescence O₂ imaging system

Planar optode Optical O₂ sensor nano-(macro)particles

Luminophores: Platinum/palladium-porphyrin complexes

Picture source: Santner, J., et al. 2015 Review: Moßhammer, et al., 2019

Lifetime-based LIF (*t*LIF) system

4 of 11

Further development 4W 450 nm laser 11 μm/pixel FOV: 13.2 × 17.6 mm	
Integration time: 62.6 ms	(160 ms)
	sir I
	→ L
PIOEP + MIY	Laser ///\ excitation
Seeding conc.: 0.2% v/v	Luminescence intensity
O ₂ sensitivity: 5-7%	Measurement Window 1, W ₁
	Measurement Window 2, W2
PtOEP: platinum(II)-octaetylporphyrin MY: macrolex vellow \rightarrow antenna dve	4

Surface cooling induced gas transfer using O₂ imaging technique 20.12.2022 E. Murniati

Climate chamber facility

n	in nature
2035°C (± 0.2)	15 - 20°C
520°C (± 0.5)	+5°C - 25+°C
520°C	+13°C
527 × 10 ⁹	10 ¹¹ (lake)
370500	500 (O ₂ 20°C)
57	7 (water)
70350 Wm ⁻²	-400+400 Wm ⁻²
	n $2035^{\circ}C (\pm 0.2)$ $520^{\circ}C (\pm 0.5)$ $520^{\circ}C$ 527×10^{9} 370500 57 $70350 Wm^{-2}$

Fiber-optic O₂ sensor (tip $\phi \pm 50 \ \mu m$)

5 of 11 20.12.2022

Surface cooling induced gas transfer using O₂ imaging technique E. Murniati

O₂ imaging system validation and uncertainty

- Insitu calibration curve measurement
- Modified Stern-Volmer relationship
- O₂ sensitivity: 5-7%

15

16

- A good agreement with the point-wise O_2 sensor
- Optical distortion near interface <100 μm

O₂ concentration dynamics

Experimental setup

Estimation of characteristic scales

Mean profile and gas flux $\langle j \rangle$

8

2 - 4 - 6 - 10 - 12 - 12 - 14 - 10 - 12 - 12 - 14 - 10 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 14 - 10 - 12 - Example velocity scale = ~ 1 mm/s

$$B = -\frac{g\alpha}{\rho c_p}q = -2.43 \times 10^{-8} \,\mathrm{m^2 s^{-3}}$$

 $w_* = (Bh)^{1/3} = 2.7 \text{ mm s}^{-1}$

 $k_L = 1.76 \times 10^{-4} \text{ cm/s}$

Bulk measurement

$$\left(\frac{k_L}{d}\right)t = ln\left(\frac{C_i - C_b}{C_i - C_{b_init}}\right)$$

 $k_L = 2.56 \times 10^{-4}$ cm/s

O₂ conc. and surface temperature dynamics

lf₩

Summary

- The current measurement setup allowed visualization of oxygen transfer dynamics
- The development of convection cells in the water surface was also observed
- Quantitative results obtained from the measurements are in good agreement with benchmark data
- Positive correlation of heat flux and gas transfer velocity

Remarks:

 O_2 quantification based on lifetime method (requiring two intensity images separated by time Δt) was limited by CCD read-out time. To increase time resolution, one way would be by using two cameras simultaneously.

THANK YOU VERY MUCH

Erni Murniati Visiting address: Otto-Amman-Platz Nr. 1, Geb. 10.81, Room 124, 76131 Karlsruhe, Germany Phone: +49 (0) 721 608 46668 erni.murniati@kit.edu

Institute of Hydromechanics (IfH)

Karlsruhe Institute of Technology (KIT)

