Formation of sub-Hinze scale bubbles in turbulence and bubble dynamics under breaking waves

Daniel Ruth, Megan Mazzatenta, Martin Erinin, Baptiste Néel, Rob Jaquette, Wouter Mostert, Fabrice Veron, and Luc Deike

The 8th International Symposium on Gas Transfer at Water Surfaces

May 2022

Entrained bubbles experience a **turbulent flow** induced by the breaking wave

Mostert, W., Popinet, S., & Deike, L. (2022). **High-resolution direct simulation of deep water breaking waves: transition to turbulence, bubbles and droplets production.** (Manuscript in press at *Journal of Fluid Mechanics.*)

Bubbles formed by wave breaking

turbulence, surface tension effects are **balanced** at the **Hinze scale**^[1], $d_{\rm H} \sim \epsilon^{-2/5} (\sigma / \rho)^{3/5}$

Bubbles formed by wave breaking

Deike, L. (2022). Mass transfer at the ocean-atmosphere interface: The role of wave breaking, droplets, and bubbles. *Annual Review of Fluid Mechanics*, *54*, 191-224.

How do bubbles **break up** in turbulence?

How are bubbles **entrained** and **transported** by **breaking waves**?

Turbulence generation

A population of **child bubbles** is created when a large **parent bubble** is exposed to **turbulence**

A population of **child bubbles** is created when a large **parent bubble** is exposed to **turbulence**

 $d/d_{\rm H}$, bubble size relative to Hinze scale

Smallest bubbles originate in **capillary instabilities**

Smallest bubbles originate in capillary instabilities

3-D tracking of individual break-ups

t= 1.218 s

A model for bubble break-up

How do bubbles **break up** in turbulence?

→ $\propto (d/d_{\rm H})^{-3/2}$ scaling for the small bubble size distribution results from **capillary instabilities** during the break-up of **large bubbles in turbulence**

How are bubbles **entrained** and **transported** by **breaking waves**?

Bubble concentration under the forced wave field

characteristic **wave slope** = 0.32

→ now, consider **time-averaged** bubble concentrations

Bubble concentration under the forced wave field

[1] Hwang, P. A., Hsu, Y. L., & Wu, J. (1990). Air bubbles produced by breaking wind waves: A laboratory study. Journal of physical oceanography, 20(1), 19-28.

The **Stokes drift**^[1] transports fluid particles near the surface of a wavy flow

[1] van den Bremer, T. S., & Breivik, Ø. (2018). **Stokes drift.** *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, *376*(2111), 20170104.

Enhanced bubble transport during entrainment

Enhanced bubble transport during entrainment

Bubbles move **faster** than the relevant Stokes drift:

- Buoyancy/density modifications to Lagrangian drift^[1]
- Effects of wave breaking, which has been shown to enhance the stream-wise transport of fluid tracers and solid particles^[2-3]

[1] DiBenedetto, M. H., Clark, L. K., & Pujara, N. (2022). Enhanced settling and dispersion of inertial particles in surface waves. Journal of Fluid Mechanics, 936.

[2] Deike, L., Pizzo, N., & Melville, W. K. (2017). Lagrangian transport by breaking surface waves. Journal of Fluid Mechanics, 829, 364-391.

[3] Lenain, L., Pizzo, N., & Melville, W. K. (2019). Laboratory studies of Lagrangian transport by breaking surface waves. Journal of Fluid Mechanics, 876.

Summary of work on bubble entrainment

- Bubbles are **entrained** to a depth comparable to the **amplitude** of the wave that breaks
- The time-averaged concentration below this depth decays exponentially, with a length scale set by the breaking wave amplitude
- The stream-wise transport of bubbles during entrainment is enhanced relative to the Stokes drift due to the effects of breaking

Questions?

