Modelling the Marine Environment

We are internationally renowned for our expertise in modelling the marine environment and we host one of the largest and most experienced marine ecosystem modelling groups in the world. Our models enable us to gain a greater understanding of the dynamics and potential change of marine processes and systems, and we continually refine and build new models to address the emerging challenges facing the global ocean and society that depends upon it.

There are increasing calls from policy makers and ocean users to make projections of how the ocean may change and in turn affect the resources the ocean provides. Combining ecological, physical and chemical understanding into dynamic models of the ocean provides us with tools with which we can assess the vulnerabilities and opportunities of marine systems and promote good management.

We work at a range of scales encapsulating global earth-system models, regional seas and local systems such as estuaries and bays. Our research covers issues from climate change and ocean acidification, including mitigation to offshore energy, aquaculture, fisheries and good environmental status.

We collaborate with colleagues internally, nationally and across the globe applying models to a wide range of pressing questions, developing new methods to safeguard the sustainability of the ocean and increasing our understanding of how it works.

Making a difference

Our models are used to understand the implications and risks of global change and human activity and produce decision support tools that can be used by policy makers and regulators to inform choices over the optimum use of natural resources and the marine environment.

Further information

For further information contact Jerry Blackford ( or see our dedicated sub-site about the Marine System Modelling Group at PML.



Strategies for Environmental Monitoring of Marine Carbon Capture and Storage (STEMM-CCS)

Contact: Jerry Blackford

STEMM-CCS is an ambitious multi-disciplinary project that will deliver new approaches, methodologies and tools for the safe operation of offshore...

TOSCA - Towards Operational Size-class Assimilation

TOSCA - Towards Operational Size-class Assimilation

Contact: Dr Stefano Ciavatta

This project will evolve the capability of CMEMS to monitor and simulate biogeochemical indicators of the health of European shelf-seas, by...

ReCICLE: Resolving Climate Impacts on shelf and CoastaL sea Ecosystems

Resolving Climate Impacts on shelf and CoastaL sea Ecosystems (ReCICLE)

Contact: Professor Icarus Allen

Shelf and coastal seas provide vital services for society, notably food, from fish, and climate regulation, through their role in drawing down and...

|< <  1 2 3   > >|

Other recent news articles


Marine environment vital for UK economy

A new approach to understanding the UK’s marine economy changes our understanding of its importance, suggesting that its contributions are double those previously estimated, highlighting the strength of its leisure and recreation sectors and improving our ability to link natu...


UK Environmental Prediction collaboration delivering new research on high resolution interactions be

More than 50 researchers from across a wide range of organisations and disciplines gathered in late June for a UK Environmental Prediction (UKEP) workshop as part of a national collaboration, co-led by Plymouth Marine Laboratory (PML), working on the UK's first fully-coupled ...


To understand the sea, focus on the seabed

A new review, led by PML scientists, sets priorities for the benefit of future benthic research.

|< <  1 2 3   > >|

Selected key publications

Blackford, J; Artioli, Y; Clark, J; de Mora, L. 2017. Monitoring of offshore geological carbon storage integrity: implications of natural variability in the marine system and the assessment of anomaly detection criteria. International Journal of Greenhouse Gas Control. 64, 99-112. doi: 10.1016/j.iggc.2017.06.020

Butenschon, M; Clark, JR; Aldridge, JN; Allen, JI; Artioli, Y; Blackford, JC; Bruggeman, J; Cazenave, P; Ciavatta, S; Kay, S; Lessin, G; van Leeuwen, S; Van der Molen, J; de Mora, L; Polimene, L; Sailley, SF; Stephens, N; Torres, R. 2016. ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels. Geoscientific Model Development, 9 (4). 1293-1339. doi: 10.5194/gmd-9-1293-2016

Cazenave, PW; Torres, R;, Allen, JI. 2016. Unstructured grid modelling of offshore wind farm impacts on seasonally stratified shelf seas. Progress in Oceanography, 145: 25-41 doi: 10.1016/j.pocean.2016.04.004.

Ciavatta, S; Kay, S; Saux-Picart, S; Butenschon, M; Allen, JI. 2016. Decadal reanalysis of biogeochemical indicator and fluxes in the North West European shelf-sea ecosystem, Journal of Geophysical Research - Oceans. doi: 10.1002/2015JC011496

Clark, JR; Cole, M; Lindeque, PK; Fileman, E; Blackford, JC; Lewis, C; Lenton, TM; Galloway, TS. 2016. Marine microplastic debris: a targeted plan for understanding and quantifying interactions with marine life Frontiers in Ecology and the Environment, 14, 317-324. doi: 10.1002/fee.1297

de Mora, L; Butenschön, M; Allen, JI. 2016. The assessment of a global marine ecosystem model on the basis of emergent properties and ecosystem function: a case study with ERSEM, Geoscientific Model Development 9, 59-76. doi:10.5194/gmd-9-59-2016.

Kay, S; Butenschon, M. 2016. Projections of change in key ecosystem indicators for planning and management of marine protected areas: An example study for European seas. Estuarine, Coastal and Shelf Science. doi: 10.1016/j.ecss.2016.03.003 (In Press)

Lessin, G; Artioli. Y; Queiros, AM; Widdicombe, S; Blackford, JC. 2016. Modelling impacts and recovery in benthic communities exposed to localised high CO2. Marine Pollution Bulletin, 109(1), 267-280. 10.1016/j.marpolbul.2016.05.071

Skákala, J; Cazenave, PW; Smyth, TJ; Torres, R. 2016. Using multifractals to evaluate oceanographic model skill. Journal of Geophysical Research: Oceans, 121, 5487-5500. DOI 10.1002/2016JC011741