Renewable energy

Across the globe there is commitment to finding alternative sources of energy to reduce our dependency on the finite resources of fossil fuels. The marine environment remains the least developed region on Earth and holds great potential for the development of sustainable energy sources such as offshore wind and tidal power. However, the benefits of such new technologies need to be weighed against and the costs and risks to the marine environment.

Currently there is limited evidence available as to the local and regional impact of offshore and tidal installations and we are working to develop methods and techniques to assess these changes.

We are investigating new approaches to monitor marine life and assess the socio-economic impacts of renewable energy structures and have used the mathematical model FVCOM to assess and forecast the impacts of these structures on scales from a single turbine to an entire shelf sea.

Using our model we have demonstrated that although the effects of a single turbine are small, cumulatively the impacts of multiple installations can disrupt the flow of water, potentially altering marine ecosystems, and even the heights of tides. This can disrupt the benefits we derive from a healthy marine environment where even small changes to the tides can have damaging consequences for coastal habitats and flooding risks, particularly in conjunction with the changes already seen as a result of climate change.

In order to examine the wider costs, benefits and trade-offs of marine renewable energy, we have proposed and tested methods for holistic assessment of the impacts of tidal barrages and offshore wind farms on ecosystem services. Our environmental economists have also determined monetary values for the effects of these technologies on habitats, species and the seascape. We have further examined how the benefits of offshore wind farms could be maximised through co-location with commercial and recreational fishing activities. With the prospect of commercially viable tidal energy coming ever closer, we are examining public perceptions, the role of small scale and community-led initiatives, and the implications of tidal developments for regional economies.

Further information

Projects

South West Partnership for Environment & Economic Prosperity (SWEEP)

South West Partnership for Environment & Economic Prosperity (SWEEP)

Contact: Professor Melanie Austen

SWEEP is a new initiative that will help deliver economic and community benefits to the South West, whilst also protecting and enhancing the area...

ADdressing Valuation of Energy and Nature Together (ADVENT)

ADdressing Valuation of Energy and Nature Together (ADVENT)

Contact: Dr Nicola Beaumont

Advent is a UK Energy Research Centre Grand Challenge project exploring future UK low carbon energy pathways and quantifying their differing...

Quantifying benefits and impacts of fishing exclusion zones around Marine Renewable Energy Installat
Completed

Quantifying benefits and impacts of fishing exclusion zones around Marine Renewable Energy Installations (QBEX)

Contact: Professor Melanie Austen

The aim of this project is to assess the benefits and impacts of fishing exclusion zones around marine renewable energy installations. A side...

|< <  1 2 3   > >|

You may be interested in...

News

Fuelling our future

As part of an ongoing Energy Bits filmmaking project, a team of students from Bodmin College in Cornwall make biofuel from algae and waste cooking oil – with a little help from PML and a local farm that uses only sustainable and renewable energy sources.

News

Angler survey

Calling all sea-anglers! Have you ever thought about how renewable energy from the marine environment is affecting your angling?

News

PML collaborate with Plymouth University to advance understanding of the marine environment

Two internationally renowned marine research organisations have forged a partnership that will see their world-leading experts collaborating on a series of innovative projects.

Selected key publications

Hooper, T; Austen, M. 2013. Tidal barrages in the UK: Ecological and social impacts, potential mitigation, and tools to support barrage planning. Renewable and Sustainable Energy Reviews 23: 289-298.

Hooper, T; Austen, M. 2014. The co-location of offshore windfarms and decapod fisheries in the UK: Constraints and opportunities. Marine Policy 43: 295-300.

Hooper, T; Ashley, M; Austen, M. 2015. Perceptions of fishers and developers on the co-location of offshore wind farms and decapods fisheries in the UK. Marine Policy 61: 16-22.

Related recent publications

  1. Hattam, C ; Hooper, TL; Papathanasopoulou, E. 2017 A Well-Being Framework for Impact Evaluation: the Case of the UK Offshore Wind Industry. Marine Policy. 10.1016/j.marpol.2016.10.024
    View publication

  2. Cox, SL; Witt, MJ; Embling, CB; Godley, BJ; Hosegood, PJ; Miller, PI; Votier, SC; Ingram, SN. 2017 Temporal patterns in habitat use by small cetaceans at an oceanographically dynamic marine renewables test site in the Celtic Sea [in special issue: European Marine Megafauna] Deep Sea Research Part II: Topical Studies in Oceanography, 141. 178-190. 10.1016/j.dsr2.2016.07.001
    View publication

  3. Queiros, AM; Huebert, KB; Keyl, F; Fernandes, JA; Stolte, W; Maar, M; Kay, S; Jones, MC; Hamon, KG; Hendriksen, G; Vermard, Y; Marchal, P; Teal, LR; Somerfield, PJ; Austen, MC; Barange, M; Sell, AF; Allen, JI; Peck, MA. 2016 Solutions for ecosystem-level protection of ocean systems under climate change. Global Change Biology, 22. 3927-3936. 10.1111/gcb.13423
    View publication

  4. Cazenave, P; Torres, R; Allen, JI. 2016 Unstructured grid modelling of offshore wind farm impacts on seasonally stratified shelf seas. Progress in Oceanography. /10.1016/j.pocean.2016.04.004
    View publication

  5. Pittman, SJ; Winship, AJ; Poti, M; Kinlan, BP; Leirness, JB; Baird, RW; Barlow, J; Becker, EA; Forney, KA; Hill, MC; Miller, PI; Mobley, J; Oleson, EM. 2016 Chapter 6: Marine Mammals - Cetaceans. In: Costa, BM; Kendall, MS, (eds.) Marine Biogeographic Assessment of the Main Hawaiian Islands. Silver Spring, MD, USA, Bureau of Ocean Energy Management and National Oceanic and Atmospheric Administration, 227-265, 359pp. (OCS Study BOEM 2016-035 and NOAA Technical Memorandum NOS NCCOS 214, OCS St).
    View publication

View more publications