Carbon Capture and Storage (CCS)

Carbon (dioxide) Capture and Storage (CCS) is used as a mitigation strategy for addressing the increasing levels of carbon dioxide in the atmosphere. We are working to deliver new approaches, methodologies and tools for the safe and efficient operation of offshore storage sites.

CCS has been identified as a climate change mitigation strategy which can significantly reduce the amount of carbon dioxide emitted to the atmosphere from fossil fuel based power generation and other industrial sources. In the UK and many other countries the best storage reservoirs occur in offshore geological formations several 100s of metres below the sea floor. Assurance that the CO2 remains permanently stored is important from both a climate change and local environmental perspective.

We are conducting research underpinning the environmentally safe and sustainable implementation of CCS by developing strategies and systems for effective monitoring and environmental impact assessment, which will increase confidence in CCS as a viable option for reducing atmospheric carbon dioxide, benefiting a broad range of stakeholders from regulatory bodies, to industry and the wider CCS community.

Our approach combines observations, field experiments, laboratory work and mathematical modelling to gain a better understanding of the behaviour of CO2 in marine systems and how best to detect anomalous events.

Making a difference

Our CCS work has made an international impact on policy, by informing the London Convention on disposal at sea. We work closely with industry and policy makers, to quantify and lower operational risk as well as by proposing cost effective monitoring strategies. With the potential expansion of CCS in forthcoming years, this work has great potential for future application.

Further information

For further information about modelling, monitoring or detection contact Jerry Blackford (jcb@pml.ac.uk) and for information about the ecological impacts of CCS contact Steve Widdicombe (swi@pml.ac.uk).

Projects

Sub-seabed CO2 Storage: Impact on Marine Ecosystems (ECO2)

Sub-seabed CO2 Storage: Impact on Marine Ecosystems (ECO2)

Contact: Professor Steve Widdicombe

The ECO2 project aims to establish a framework of best environmental practices to guide the management of offshore CO2 injection and storage. A...

Research into impacts and safety in CO2 storage (RISCS)
Completed

Research into impacts and safety in CO2 storage (RISCS)

Contact: Jerry Blackford

RISCS was a European project that aimed to improve our understanding of the possible environmental impacts of geological storage of CO2. The...

Measurement, Monitoring and Verification of CO2 storage
Completed

Measurement, Monitoring and Verification of CO2 storage

Contact: Jerry Blackford

This project was a collaboration between several institutes which worked to develop a marine monitoring system for underwater CCS sites.Although...

|< <  1 2   > >|

You may be interested in...

News

PML supports Carbon Capture & Storage recommendations

A major investigation from the Environmental Audit Committee, EAC is urging the government to produce a new strategy on Carbon Capture and Storage, CCS following the cancellation of a pioneering £1bn CCS competition last year, six months before it was due to be awarded.

News

Carbon dioxide capture & storage and the marine environment

Following a novel series of experiments carried out beneath the waters of a Scottish sea loch, a team of scientists led by PML have concluded that small-scale leaks from sub-seabed carbon dioxide storage are likely to have little effect on local marine life. 

News

Detecting sea floor carbon dioxide anomalies

​PML scientists are highlighting a new way of detecting carbon dioxide (CO 2 ) anomalies on the sea floor, and how this can help to monitor Carbon Dioxide Capture and Storage (CCS).

Selected key publications

Blackford, JC; Artioli, Y; Clark, J; de Mora, L. 2017. Monitoring of offshore geological carbon storage integrity: implications of natural variability in the marine system and the assessment of anomaly detection criteria International Journal of Greenhouse Gas Control 64, 99-112 doi:10.1016/j.ijggc.2017.06.020

Blackford, J; Bull, JM; Cevatoglu, M; Connelly, D; Hauton, C; James, RH; Lichtschlag, A; Stahl, H; Widdicombe, S; Wright, IC. 2015. Marine baseline and monitoring strategies for Carbon Dioxide Capture and Storage (CCS). International Journal Greenhouse Gas Control, 38, 221-229. doi: 10.1016/j.ijggc.2014.10.004

Blackford, JC; Stahl, H; Bull, JM; Bergès, BJP; Cevatoglu, M; Lichtschlag, A; Connelly, DP; James, RH; Kita, J; Long, D; Naylor, M; Shitashima, K; Smith, D; Taylor, P; Wright, I; Akhurst, M; Chen, B; Gernon, TM; Hauton, C; Hayashi, M; Kaieda, H; Leighton, TG; Sato, T; Sayer, MDJ; Suzumura, M; Tait, K; Vardy, ME; White, PR; Widdicombe, S. 2014. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nature Climate Change 4, 1011-1016. doi: 10.1038/NCLIMATE2381

Jones, DG; Beaubien, SE; Blackford, JC; Foekema, EM; Lions, J; De Vittor, C; West, JM; Widdicombe, S; Hauton, C; Queirós, AM.2015. Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage. International Journal of Greenhouse Gas Control, 40, 350-377. doi:10.1016/j.ijggc.2015.05.032

Lessin, G; Artioli, Y; Queirós, AM; Widdicombe, S; Jerry C. Blackford, JC. 2016. Modelling impacts and recovery in benthic communities exposed to localised high CO2, Marine Pollution Bulletin, 109(1), 267-280. doi:10.1016/j.marpolbul.2016.05.071.

Tait, K; Stahl, H; Taylor, P; Widdicombe, S. 2015. Rapid response of the active microbial community to CO2 exposure from a controlled sub-seabed CO2 leak in Ardmucknish Bay (Oban, Scotland). International Journal of Greenhouse Gas Control, 38, 171-181. doi:10.1016/j.ijggc.2014.11.021

Widdicombe, S; McNeill, CL; Stahl, H; Taylor, P; Queirós, AM; Nunes, J; Tait, K. 2015. Impact of sub-seabed CO2 leakage on macrobenthic community structure and diversity. International Journal of Greenhouse Gas Control, 38, 182-192. doi:10.1016/j.ijggc.2015.01.003

Related recent publications

  1. Lessin, G; Artioli, Y; Queiros, AM; Widdicombe, S; Blackford, JC. 2016 Modelling impacts and recovery in benthic communities exposed to localised high CO2. Marine Pollution Bulletin, 109 (1). 267-280. 10.1016/j.marpolbul.2016.05.071
    View publication

  2. Blackford, JC; Stahl, H; Bull, JM; Bergès, BJP; Cevatoglu, M; Lichtschlag, A; Connelly, DP; James, RH; Kita, J; Long, D; Naylor, M; Shitashima, K; Smith, D; Taylor, P; Wright, I; Akhurst, M; Chen, B; Gernon, TM; Hauton, C; Hayashi, M; Kaieda, H; Leighton, TG; Sato, T; Sayer, MDJ; Suzumura, M; Tait, K; Vardy, ME; White, PR; Widdicombe, S. 2014 Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nature Climate Change. 10.1038/nclimate2381
    View publication

  3. Jones, DG; Beaubien, SE; Blackford, JC; Foekema, EM; Lions, J; De Vittor, C; West, JM; Widdicombe, S; Hauton, C; Queiros, AM. 2015 Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage. International Journal of Greenhouse Gas Control. 10.1016/j.ijggc.2015.05.032 (In Press)
    View publication

  4. Kita, J; Stahl, H; Hayashi, M; Green, T; Watanabe, Y; Widdicombe, S. 2015 Benthic megafauna and CO2 bubble dynamics observed by underwater photography during a controlled sub-seabed release of CO2. International Journal of Greenhouse Gas Control, 38. 202-209. 10.1016/j.ijggc.2014.11.012
    View publication

  5. Widdicombe, S; McNeill, CL; Stahl, H; Taylor, P; Queiros, AM; Nunes, J; Tait, K. 2015 Impact of sub-seabed CO2 leakage on macrobenthic community structure and diversity. International Journal of Greenhouse Gas Control, 38. 182-192. 10.1016/j.ijggc.2015.01.003
    View publication

View more publications